The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. 1998

D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
Department of Veterinary Preclinical Sciences, University of Liverpool, UK. eisner@liv.ac.uk

This review discusses the mechanism and regulation of Ca release from the cardiac sarcoplasmic reticulum. Ca is released through the Ca release channel or ryanodine receptor (RyR) by the process of calcium-induced Ca release (CICR). The trigger for this release is the L-type Ca current with a small contribution from Ca entry on the Na-Ca exchange. Recent work has shown that CICR is controlled at the level of small, local domains consisting of one or a small number of L-type Ca channels and associated RyRs. Ca efflux from the s.r. in one such unit is seen as a 'spark' and the properties of these sparks produce controlled Ca release from the s.r. A major factor controlling the amount of Ca released from the s.r. and therefore the magnitude of the systolic Ca transient is its Ca content. The Ca content depends on both the properties of the s.r. and the cytoplasmic Ca concentration. Changes of s.r. Ca content and the Ca released affect the sarcolemmal Ca and Na-Ca exchange currents and this acts to control cell Ca loading and the s.r. Ca content. The opening probability of the RyR can be regulated by various physiological mediators as well as pharmacological compounds. However, it is shown that, due to compensatory changes of s.r. Ca, modifiers of the RyR only produce transient effects on systolic Ca. We conclude that, although the RyR can be regulated, of much greater importance to the control of Ca efflux from the s.r. are effects due to changes of s.r. Ca content.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012508 Sarcolemma The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Sarcolemmas
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D019837 Ryanodine Receptor Calcium Release Channel A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine

Related Publications

D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
September 2017, The Journal of general physiology,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
December 1979, Japanese journal of pharmacology,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
February 1972, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
January 1982, Annual review of physiology,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
September 1979, Experientia,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
December 2005, Biophysical journal,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
January 1992, Advances in experimental medicine and biology,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
February 2002, The Japanese journal of physiology,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
February 1994, The Journal of membrane biology,
D A Eisner, and A W Trafford, and M E Díaz, and C L Overend, and S C O'Neill
February 1972, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
Copied contents to your clipboard!