The cardiac adrenergic system in ischaemia: differential role of acidosis and energy depletion. 1998

G Simonis, and R Marquetant, and J Röthele, and R H Strasser
University of Heidelberg, Medical Center, Dept. Cardiology, Germany.

OBJECTIVE Acute myocardial ischaemia has been shown to modulate the beta-adrenergic system and to activate protein kinase C. The aim of this study was to investigate if two important components of ischaemia, i.e. energy depletion or acidosis, may contribute to these changes. METHODS Isolated rat hearts were perfused either with anoxia (in the absence of oxygen) or with cyanide in the absence of glucose as models of energy depletion with a loss of high energy phosphates. Alternatively, isolated hearts were perfused with acidic modified Krebs-Henseleit solution to induce acidosis. RESULTS Energy depletion induced by cyanide perfusion leads to an increase of beta-adrenergic receptors (81 +/- 7 vs. 50 +/- 3 fmol/mg protein, p < or = 0.05) comparable to the changes observed in ischaemia, yet without any change of total adenylyl cyclase activity or protein kinase C activity. Similar, yet less pronounced changes were induced by anoxic perfusion. Acidic perfusion, in contrast, promotes a translocation of protein kinase C to the plasma membranes, suggesting its rapid activation. Additionally, an increased total forskolin-stimulated activity of adenylyl cyclase (515 +/- 16 vs. 428 +/- 17 pmol/min/mg, p < or = 0.05) was observed. Both were comparable to the sensitization observed in early ischaemia. In acidosis, the density of beta-adrenergic receptors remained unaltered. CONCLUSIONS These data suggest that the regulation of cardiac beta-adrenergic receptors is susceptible to energy depletion, but not to acidosis, whereas the intracellular enzymes both adenylyl cyclase and protein kinase C may be regulated by intracellular acidosis. This is the first differentiation of distinct components of ischaemia modulating the beta-adrenergic signal transduction pathway. Both components may be operative in concert in acute myocardial ischaemia and may contribute to the regulation of these components of signal transduction observed in acute ischaemia.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

G Simonis, and R Marquetant, and J Röthele, and R H Strasser
March 1967, Experientia,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
July 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
January 1986, Advances in experimental medicine and biology,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
January 2011, Biochimica et biophysica acta,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
January 1999, Cardiovascular research,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
November 2000, Critical care medicine,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
January 1977, Advances in experimental medicine and biology,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
January 1993, Experimental physiology,
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
November 1996, Heart (British Cardiac Society),
G Simonis, and R Marquetant, and J Röthele, and R H Strasser
July 1978, Annals of internal medicine,
Copied contents to your clipboard!