Adverse effects of opioid agonists and agonist-antagonists in anaesthesia. 1998

T A Bowdle
Department of Anesthesiology, University of Washington, Seattle 98195, USA. bowdle@u.washington.edu

The traditional view of opioids held that the individual opioid agonists shared the same mechanism of action, differing only in their potency and pharmacokinetic properties. However, recent advances in opioid receptor pharmacology have made this view obsolete. Distinguishing features of the synthetic opioid agonists are related, at least in part, to variation in affinity and intrinsic efficacy at multiple opioid receptors. Respiratory depression is the opioid adverse effect most feared by anaesthesiologists. Specific kappa-receptor agonists produce analgesia with little or no respiratory depression. There are a number of commercially available kappa-receptor partial agonist drugs, the so-called agonist-antagonist or nalorphine-like opioids, which appear to have a limited effect on breathing. Within the series of fentanyl analogues there are differences in behaviour towards particular opioid receptors and there is evidence for subtle differences in respiratory depressant effects. Pethidine (meperidine) causes histamine release and myocardial depression, while the fentanyl analogues do not. Pethidine has atropine-like effects on heart rate, while fentanyl analogues reduce heart rate by a vagomimetic action. Severe bradycardia or even asystole is possible with fentanyl analogues, especially in conjunction with the vagal stimulating effects of laryngoscopy. Fentanyl analogues often produce minor reductions in blood pressure, and occasionally severe hypotension by centrally mediated reduction in systemic vascular resistance. Muscle rigidity and myoclonic movement occurs frequently during induction of anaesthesia with larger doses of opioids. Fentanyl and alfentanil have been reported to produce localised temporal lobe electrical seizure activity in patients with complex partial epilepsy. There are probably fewer biliary effects with agonist-antagonist opioids than the agonist opioids. The mechanism of adverse effects after spinal administration is distinctly different for morphine, which is very water soluble, compared with more lipid-soluble opioids. The systemic absorption of morphine after intrathecal or epidural administration is very slow, resulting in long duration of analgesia and low plasma concentrations, while lipid-soluble opioids are rapidly absorbed into the circulation and redistributed to the brain. The serotonin syndrome may result from coadministration of pethidine, dextromethorphan, pentazocine or tramadol with monoamine oxidase inhibitors (MAOIs) or selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs). There are clinically important interactions between opioids and hypnosedatives, resulting in synergistic effects on sedation, breathing and blood pressure.

UI MeSH Term Description Entries
D007427 Intracranial Pressure Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, CSF dynamics, and skull rigidity. Intracerebral Pressure,Subarachnoid Pressure,Intracerebral Pressures,Intracranial Pressures,Pressure, Intracerebral,Pressure, Intracranial,Pressure, Subarachnoid,Pressures, Intracerebral,Pressures, Intracranial,Pressures, Subarachnoid,Subarachnoid Pressures
D009127 Muscle Rigidity Continuous involuntary sustained muscle contraction which is often a manifestation of BASAL GANGLIA DISEASES. When an affected muscle is passively stretched, the degree of resistance remains constant regardless of the rate at which the muscle is stretched. This feature helps to distinguish rigidity from MUSCLE SPASTICITY. (From Adams et al., Principles of Neurology, 6th ed, p73) Cogwheel Rigidity,Extrapyramidal Rigidity,Gegenhalten,Nuchal Rigidity,Rigidity, Muscular,Catatonic Rigidity,Extensor Rigidity,Cogwheel Rigidities,Gegenhaltens,Muscular Rigidity,Rigidities, Cogwheel,Rigidity, Catatonic,Rigidity, Cogwheel,Rigidity, Extensor,Rigidity, Extrapyramidal,Rigidity, Muscle,Rigidity, Nuchal
D009325 Nausea An unpleasant sensation in the stomach usually accompanied by the urge to vomit. Common causes are early pregnancy, sea and motion sickness, emotional stress, intense pain, food poisoning, and various enteroviruses.
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000701 Analgesics, Opioid Compounds with activity like OPIATE ALKALOIDS, acting at OPIOID RECEPTORS. Properties include induction of ANALGESIA or NARCOSIS. Opioid,Opioid Analgesic,Opioid Analgesics,Opioids,Full Opioid Agonists,Opioid Full Agonists,Opioid Mixed Agonist-Antagonists,Opioid Partial Agonists,Partial Opioid Agonists,Agonist-Antagonists, Opioid Mixed,Agonists, Full Opioid,Agonists, Opioid Full,Agonists, Opioid Partial,Agonists, Partial Opioid,Analgesic, Opioid,Full Agonists, Opioid,Mixed Agonist-Antagonists, Opioid,Opioid Agonists, Full,Opioid Agonists, Partial,Opioid Mixed Agonist Antagonists,Partial Agonists, Opioid

Related Publications

T A Bowdle
August 1987, British journal of hospital medicine,
T A Bowdle
January 1983, Progress in neuro-psychopharmacology & biological psychiatry,
T A Bowdle
February 1983, Japanese journal of pharmacology,
T A Bowdle
March 1993, Ma zui xue za zhi = Anaesthesiologica Sinica,
T A Bowdle
January 1997, Die Pharmazie,
T A Bowdle
April 2006, Expert review of neurotherapeutics,
T A Bowdle
January 1980, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!