The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans: molecular cloning, nucleotide sequence, and expression in Escherichia coli. 1998

J C Chou, and W W Mulbry, and J D Cohen
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park 20742, USA.

A 5.5-kb DNA fragment containing the indole-3-acetyl-aspartic acid (IAA-asp) hydrolase gene (iaaspH) was isolated from Enterobacter agglomerans strain GK12 using a hybridization probe based on the N-terminal amino acid sequence of the protein. The DNA sequence of a 2.4-kb region of this fragment was determined and revealed a 1311-nucleotide ORF large enough to encode the 45-kDa IAA-asp hydrolase. A 1.5-kb DNA fragment containing iaaspH was subcloned into the Escherichia coli expression plasmid pTTQ8 to yield plasmid pJCC2. Extracts of IPTG-induced E. coli cultures containing the pJCC2 recombinant plasmid showed IAA-asp hydrolase levels 5 to 10-fold higher than those in E. agglomerans extracts. Homology searches revealed that the IAA-asp hydrolase was similar to a variety of amidohydrolases. In addition, IAA-asp hydrolase showed 70% sequence identity to a putative thermostable carboxypeptidase of E. coli.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004754 Enterobacter Gram-negative gas-producing rods found in feces of humans and other animals, sewage, soil, water, and dairy products.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000581 Amidohydrolases Any member of the class of enzymes that catalyze the cleavage of amide bonds and result in the addition of water to the resulting molecules. Amidases,Amidohydrolase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

J C Chou, and W W Mulbry, and J D Cohen
March 1997, Applied and environmental microbiology,
J C Chou, and W W Mulbry, and J D Cohen
August 2002, Physiologia plantarum,
J C Chou, and W W Mulbry, and J D Cohen
September 1988, Molecular & general genetics : MGG,
J C Chou, and W W Mulbry, and J D Cohen
March 1991, The Journal of biological chemistry,
J C Chou, and W W Mulbry, and J D Cohen
August 1989, Nucleic acids research,
J C Chou, and W W Mulbry, and J D Cohen
December 1987, Nucleic acids research,
J C Chou, and W W Mulbry, and J D Cohen
July 1998, Applied and environmental microbiology,
J C Chou, and W W Mulbry, and J D Cohen
March 1989, Journal of bacteriology,
J C Chou, and W W Mulbry, and J D Cohen
July 1992, Journal of bacteriology,
Copied contents to your clipboard!