The growth of the dendritic trees of Purkinje cells in irradiated agranular cerebellar cortex. 1976

M Berry, and P Bradley

The heads of noenatal Wistar rats were irradiated with 200 rads daily from birth to the 10th day post-partum. Ten litters each containing 5 animals were killed at 30 days post-partum and their brains treated by the Golgi-Cox technique. The dendritic trees of 24 Purkinje cells were analysed using the quantitative technique of network analysis, and comparisons made between parameters obtained from 20 normal Purkinje cells. All dendritic trees in agranular irradiated cortex were markedly reduced in size (as indicated by total dendritic length and total number of segments) although mean path lengths were normal. Segment lengths were normal over proximal branches, but uniformly increased over distal branches. Abnormal appendages, called 'giant spines' were observed on many dendrites. They were often some 10 mum in length and their presence effectively reduced segment lengths, increased the frequency of trichotomy and deviated growth from the normal random terminal pattern so that long collateral branching topologies were formed. Nevertheless, trichotomy was uniformly reduced in those trees without 'giant spines' and the distribution of branching patterns suggested that growth had proceeded by random terminal dichotomy. These results demonstrate that the development of dendritic trees is retarded in the agranular irradiated cerebellum, where synaptogenesis is very greatly reduced below normal. The quantitative changes in segment lengths, size of trees, and trichotomy accord with those predicted by the filopodial synaptogenic hypothesis of dendritic growth formulated by Vaughn et al. 99, whilst the results of the topological analysis suggest that branching is established by a degree of non-random interaction between growing dendrites and their substrate. 'Claw-like' dendritic complexes within some Purkinje cell trees may have been induced by aberrent fibre bundles of few surviving granule cells.

UI MeSH Term Description Entries
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Berry, and P Bradley
August 1994, Journal of neuroscience research,
M Berry, and P Bradley
January 1970, Acta biologica Academiae Scientiarum Hungaricae,
M Berry, and P Bradley
April 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Berry, and P Bradley
January 2004, Progress in histochemistry and cytochemistry,
M Berry, and P Bradley
January 1973, Journal of neurobiology,
M Berry, and P Bradley
July 2000, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology,
M Berry, and P Bradley
September 1982, Journal of neurochemistry,
M Berry, and P Bradley
January 1980, Journal fur Hirnforschung,
Copied contents to your clipboard!