Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. 1998

A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
Instituto Investigaciones Biomédicas, August Pi i Suñer (IDIBAPS), CSIC-UB, Barcelona, Spain.

OBJECTIVE Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. METHODS GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. RESULTS Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). CONCLUSIONS GSH plays a critical protective role in maintaining nuclear and mtDNA functional integrity, determining the intrinsic radiosensitivity of Hep G2. Although the DNA repair is a complex process that is not yet completely understood, the protective role of GSH probably does not seem to involve the repair of classical DNA damage but may relate to modification of DNA damage dependent signaling.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008298 Maleates Derivatives of maleic acid (the structural formula (COO-)-C
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004159 Diphenylamine In humans it may be irritating to mucous membranes. Methemoglobinemia has been produced experimentally. In veterinary use, it is one of active ingredients in topical agents for prevention and treatment of screwworm infestation. An indicator in tests for nitrate poisoning.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine

Related Publications

A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
June 2006, Toxicological sciences : an official journal of the Society of Toxicology,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
April 1994, Radiation research,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
June 2013, Cell cycle (Georgetown, Tex.),
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
November 1977, Nucleic acids research,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
January 2021, Biochimica et biophysica acta. Bioenergetics,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
October 2015, Radiation research,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
March 2012, Nihon rinsho. Japanese journal of clinical medicine,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
January 1999, Biochimie,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
January 2014, International journal of radiation biology,
A Morales, and M Miranda, and A Sánchez-Reyes, and A Biete, and J C Fernández-Checa
August 2016, Mutation research. Genetic toxicology and environmental mutagenesis,
Copied contents to your clipboard!