Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. 1998

K G Thomson, and J E Thomas, and R G Dietzgen
Queensland Department of Primary Industries, Queensland Agricultural Biotechnology Centre, The University of Queensland, St Lucia, Brisbane, Australia.

Retrotransposon-like sequences have been serendipitously detected in the genome of commercial pineapple, Ananas comosus. The sequence from a 2.6 kb cloned fragment of this element had greatest similarity to the del1 Lilium henryi retrotransposon and the gypsy/Ty3 group of retroelements. The order of the genes from 5' to 3' was reverse transcriptase, ribonuclease H and integrase. The integrase domain contained the amino acid sequence motifs which have been associated with recognition of the long terminal repeats and with the cutting/joining reactions required for integration of similar retroelements into the host genome. The retrotransposon existed as a population of variable sequences which were dispersed throughout the genome of pineapple. Southern hybridisation showed that the retrotransposon had integrated repeatedly into the pineapple genome. The reading frame of the element was not interrupted by stop codons, suggesting that it is still potentially capable of transposing. This is the first report of a retrotransposon in pineapple, which we have called deal (for dispersed element of Ananas).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005638 Fruit The fleshy or dry ripened ovary of a plant, enclosing the seed or seeds. Berries,Legume Pod,Plant Aril,Plant Capsule,Aril, Plant,Arils, Plant,Berry,Capsule, Plant,Capsules, Plant,Fruits,Legume Pods,Plant Arils,Plant Capsules,Pod, Legume,Pods, Legume
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide
D018626 Retroelements Elements that are transcribed into RNA, reverse-transcribed into DNA and then inserted into a new site in the genome. Long terminal repeats (LTRs) similar to those from retroviruses are contained in retrotransposons and retrovirus-like elements. Retroposons, such as LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS do not contain LTRs. MDG1 Retrotransposons,Mobile Dispersed Genetic Elements,Retroposons,Retrotransposons,Retrovirus-like Elements,Ty1 Transposon,Element, Retrovirus-like,Elements, Retrovirus-like,MDG1 Retrotransposon,Retroelement,Retroposon,Retrotransposon,Retrotransposon, MDG1,Retrotransposons, MDG1,Retrovirus like Elements,Retrovirus-like Element,Transposon, Ty1,Transposons, Ty1,Ty1 Transposons
D018745 Genome, Plant The genetic complement of a plant (PLANTS) as represented in its DNA. Plant Genome,Genomes, Plant,Plant Genomes
D019426 Integrases Recombinases that insert exogenous DNA into the host genome. Examples include proteins encoded by the POL GENE of RETROVIRIDAE and also by temperate BACTERIOPHAGES, the best known being BACTERIOPHAGE LAMBDA. Integrase

Related Publications

K G Thomson, and J E Thomas, and R G Dietzgen
January 2006, Methods in molecular biology (Clifton, N.J.),
K G Thomson, and J E Thomas, and R G Dietzgen
January 2015, Methods in molecular biology (Clifton, N.J.),
K G Thomson, and J E Thomas, and R G Dietzgen
June 2016, Mitochondrial DNA. Part B, Resources,
K G Thomson, and J E Thomas, and R G Dietzgen
December 2022, Archives of virology,
K G Thomson, and J E Thomas, and R G Dietzgen
November 2022, Microbiology resource announcements,
K G Thomson, and J E Thomas, and R G Dietzgen
August 2006, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
K G Thomson, and J E Thomas, and R G Dietzgen
October 2007, Planta medica,
K G Thomson, and J E Thomas, and R G Dietzgen
January 2013, Methods in molecular biology (Clifton, N.J.),
K G Thomson, and J E Thomas, and R G Dietzgen
January 2023, Frontiers in plant science,
Copied contents to your clipboard!