The Hsp90-specific inhibitor, geldanamycin, blocks CD28-mediated activation of human T lymphocytes. 1998

T Schnaider, and J Somogyi, and P Csermely, and M Szamel
Department of Medical Chemistry, Semmelweis University, Budapest, Hungary.

The 90 kDa heat shock protein (Hsp90) is a molecular chaperone aiding the folding of nuclear hormone receptors and protein kinases. Hsp90-mediated folding can be disrupted by the Hsp90-specific drug, geldanamycin. Here we provide evidence for the inhibition of the CD28-specific BW 828 antibody-mediated activation of human T lymphocyte proliferation, IL-2 secretion and IL-2 receptor expression by geldanamycin. Our results suggest that the major cytoplasmic chaperone, Hsp90, plays an important role in CD28-mediated T lymphocyte activation.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016227 Benzoquinones Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. 1,2-Benzoquinones,1,4-Benzoquinones,Benzodiones,2,5-Cyclohexadiene-1,4-Diones,o-Benzoquinones,p-Benzoquinones
D047029 Lactams, Macrocyclic LACTAM-forming compounds with a ring size of approximately 1-3 dozen atoms. Ansamycins,Macrocyclic Lactams

Related Publications

T Schnaider, and J Somogyi, and P Csermely, and M Szamel
June 2008, Organic letters,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
August 2008, Molecular pharmacology,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
December 2003, International journal of radiation biology,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
January 2005, Antiviral chemistry & chemotherapy,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
September 2001, Yao xue xue bao = Acta pharmaceutica Sinica,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
June 2006, The Journal of pharmacology and experimental therapeutics,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
December 1993, Journal of immunology (Baltimore, Md. : 1950),
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
January 1999, Cellular immunology,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
January 1991, Tissue antigens,
T Schnaider, and J Somogyi, and P Csermely, and M Szamel
June 1996, The Journal of experimental medicine,
Copied contents to your clipboard!