Antifolate resistance due to new and known Plasmodium falciparum dihydrofolate reductase mutations expressed in yeast. 1998

J F Cortese, and C V Plowe
Department of Medicine, University of Maryland School of Medicine, Baltimore 21201, USA.

Two new dihydrofolate reductase (DHFR) mutations were recently discovered in Plasmodium falciparum samples from an area of Bolivia with high rates of in vivo resistance to pyrimethamine-sulfadoxine: a Cys-->Arg point mutation in codon 50 and a five amino acid insertion after codon 30, termed the Bolivia repeat. We used a yeast expression system to screen these new DHFR mutants, as well as all of the other known DHFR mutant genotypes, against four antifolates: pyrimethamine, cycloguanil, chlorcycloguanil, and WR99210. The prodrug proguanil was also evaluated. The primary 108-Asn mutation, the known secondary mutations 51-Ile, 59-Arg and 164-Leu, as well as the 50-Arg mutation, all progressively enhanced pyrimethamine resistance in naturally observed combinations with one another, with the presence of 164-Leu most significantly increasing resistance. Cycloguanil and chlorcycloguanil resistance were most impacted by 164-Leu and the paired 16-Val/108-Thr. Proguanil had no effect on malaria DHFR. All DHFRs analyzed were sensitive to WR99210. The Bolivia repeat did not markedly affect drug sensitivity. We conclude that malaria DHFR can be reliably, rapidly and inexpensively analyzed in yeast for activity against a broad spectrum of antifolates. This system may be useful for initially characterizing newly discovered genotypes before proceeding to P. falciparum transfection; for large-scale geographic surveys of drug resistance; and for screening new antifolates or new antifolate combinations for their effectiveness against a large panel of DHFR mutants.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001838 Bolivia A country in central South America, located southwest of Brazil.
D002727 Proguanil A biguanide compound which metabolizes in the body to form cycloguanil, an anti-malaria agent. Chlorguanid,Chloroguanide,Bigumal,Chloriguane,Chloroguanide Hydrochloride,Paludrin,Paludrine,Proguanil Hydrochloride,Hydrochloride, Chloroguanide,Hydrochloride, Proguanil
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J F Cortese, and C V Plowe
February 1997, Proceedings of the National Academy of Sciences of the United States of America,
J F Cortese, and C V Plowe
March 2002, Molecular and biochemical parasitology,
J F Cortese, and C V Plowe
January 2006, European journal of pharmacology,
J F Cortese, and C V Plowe
November 2011, Proceedings of the National Academy of Sciences of the United States of America,
J F Cortese, and C V Plowe
April 2009, Antimicrobial agents and chemotherapy,
J F Cortese, and C V Plowe
October 1996, Molecular and biochemical parasitology,
J F Cortese, and C V Plowe
January 2002, Molecular and biochemical parasitology,
Copied contents to your clipboard!