Hypothalamic Na+ and Ca++ ions and temperature set-point: new mechanisms of action of a central or peripheral thermal challenge and intrahypothalamic 5-HT, NE, PGEi and pyrogen. 1976

R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf

The effects of changes in ambient and central temperature, amines, PGEu and pyrogen were investigated with respect to the mechanism of Na+-Ca++ ratio in the posterior hypothalamus of the unrestrained cat. Guide tubes were implanted bilaterally above the posterior hypothalamic area of 23 cats so as to accommodate push-pull cannulae. After a Na+ or Ca++ sensitive site was identified by perfusion at 50 mul/min of an artificial CSF containing 10.4 mM excess Ca++ ions or 13.6 mM excess Na+ ions, several types of experiments were undertaken with the results summarized as follows: if the cat was exposed to a cold or warm environmental temperature as the posterior hypothalamus was perfused with excess cation, the typical hypothermia was produced by Ca++ and hyperthermia by Na+ ions. However, if the cat was exposed to peripheral cooling or warming 30 min prior to the perfusion, the fall or rise produced by Ca++ or Na+ was attenuated or prevented. In other experiments, 1.0 muCi 45Ca++ was injected in the ion sensitive site in the posterior hypothalamus to label stores of the cation. Raising of ambient temperature caused a retention of 45Ca++ in this hypothalmic area, whereas a cold environmental temperature enhanced the efflux of 45Ca++ at the same perfusion site. The magnitude of change in 45Ca++ efflux depended upon the intensity of the thermal challenge. Similarly, warming of the anterior hypothalmic, preoptic area by means of implanted thermodes caused an immediate diminution in 45Ca++ efflux in the posterior hypothalamus, whereas cooling of this anterior region augmented the extrusion of 45Ca++ ions from the posterior area. When substances which produce a temperature change were applied to the same thermosensitive zone, the direction of shift in 45Ca++ flux in the posterior area corresponded to the signal for heat production or heat loss. That is, the microinjection of 5-HT, PGE1 or Salmonella typhosa into the anterior hypothalamus enhanced the efflux of 45Ca++ in the posterior hypothalamus as hyperthermia developed, whereas a similar microinjection of norepinephrine reduced the 45Ca++ output from the same sites. Finally, locally anesthetizing the cells of the anterior hypothalamus by the nerve blocker, procaine, prevented the cold and heat-induced 45Ca++ eflux and retention, respectively. These results suggest that if the Na+-Ca++ ratio in the posterior hypothalamus establishes and maintains the set-point for body temperature of 37 degrees -38 degrees C, the mechanism of lability of Ca++ through changes in binding characteristics, transport, or metabolism of the cation serves two purposes: (1) the active defense of the set-point temperature through gradations in ion shifts; and (2) the upward or downward change in set-point value, pathological or normal, triggered by virtue of impulses relayed from the anterior hypothalamus.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007032 Hypothalamus, Anterior The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS. Hypothalamus, Supraoptic,Anterior Hypothalamic Commissure,Anterior Hypothalamic Decussation of Ganser,Anteroventral Periventricular Nucleus,Anterior Hypothalamic Commissures,Anterior Hypothalamus,Commissure, Anterior Hypothalamic,Commissures, Anterior Hypothalamic,Hypothalamic Commissure, Anterior,Hypothalamic Commissures, Anterior,Nucleus, Anteroventral Periventricular,Periventricular Nucleus, Anteroventral,Supraoptic Hypothalamus
D007034 Hypothalamus, Posterior The part of the hypothalamus posterior to the middle region consisting of several nuclei including the medial maxillary nucleus, lateral mammillary nucleus, and posterior hypothalamic nucleus (posterior hypothalamic area). The posterior hypothalamic area is concerned with control of sympathetic responses and is sensitive to conditions of decreasing temperature and controls the mechanisms for the conservation and increased production of heat. Hypothalamic Region, Posterior,Posterior Hypothalamic Region,Area Hypothalamica Posterior,Hypothalamus Posterior,Mammillary Region,Posterior Hypothalamus,Posterior Periventricular Nucleus,Premammillary Nucleus,Supramammillary Commissure,Supramammillary Nucleus,Area Hypothalamica Posteriors,Commissure, Supramammillary,Commissures, Supramammillary,Hypothalamic Regions, Posterior,Hypothalamica Posterior, Area,Hypothalamica Posteriors, Area,Hypothalamus Posteriors,Mammillary Regions,Nucleus, Posterior Periventricular,Nucleus, Premammillary,Nucleus, Supramammillary,Periventricular Nucleus, Posterior,Posterior Hypothalamic Regions,Posterior, Area Hypothalamica,Posterior, Hypothalamus,Posteriors, Area Hypothalamica,Posteriors, Hypothalamus,Region, Mammillary,Region, Posterior Hypothalamic,Regions, Mammillary,Regions, Posterior Hypothalamic,Supramammillary Commissures
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011343 Procaine A local anesthetic of the ester type that has a slow onset and a short duration of action. It is mainly used for infiltration anesthesia, peripheral nerve block, and spinal block. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1016). Anuject,Geriocaine,Gerokit,Hewedolor-Procain,Lophakomp-Procain N,Novocain,Novocaine,Procain Braun,Procain Jenapharm,Procain Rödler,Procain Steigerwald,Procain curasan,Procaina Serra,Procaine Hydrochloride,Pröcaine chlorhydrate Lavoisier,Röwo Procain,procain-loges,Hydrochloride, Procaine
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011749 Pyrogens Substances capable of increasing BODY TEMPERATURE and cause FEVER and may be used for FEVER THERAPY. They may be of microbial origin, often POLYSACCHARIDES, and may contaminate distilled water. Pyrogen
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing

Related Publications

R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
May 1995, Pharmacology, biochemistry, and behavior,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
January 1990, Acta physiologica Polonica,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
August 1989, Physiology & behavior,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
December 1965, The Journal of physiology,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
January 1977, Pharmacology, biochemistry, and behavior,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
January 1961, Archives des sciences physiologiques,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
January 1981, Psychopharmacology,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
July 2012, Drug discovery today,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
March 2005, Experimental physiology,
R D Myers, and C W Simpson, and D Higgins, and R A Nattermann, and J C Rice, and P Redgrave, and G Metcalf
February 1976, British journal of pharmacology,
Copied contents to your clipboard!