Characterization of a novel bispecific antibody that mediates Fcgamma receptor type I-dependent killing of tumor-associated glycoprotein-72-expressing tumor cells. 1998

C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
Medarex, Inc., Annandale, New Jersey 08801, USA.

A bispecific antibody was made by chemical conjugation of Fab' fragments from humanized antibodies specific for tumor-associated glycoprotein-72 (TAG-72) and high-affinity immunoglobulin receptor, FcgammaA receptor type I (FcgammaRI). The purified anti-TAG-72 x anti-FcgammaRI (HCC49xH22) bispecific antibody had an approximate Mr of 111,000, consistent with a F(ab')2, and bound specifically to KLEB and LS174T tumor cell lines, which express the TAG-72 tumor antigen. Furthermore, HCC49x H22 was shown to simultaneously bind to KLEB cells and a soluble FcgammaRI fusion protein, demonstrating the bifunctional nature of the molecule. Using IFN-gamma-treated monocytes as effector cells, concentrations of the bispecific antibody in the range of 1-10,000 ng/ml mediated specific lysis of TAG-72-positive tumor cells. In contrast, the bispecific antibody did not promote antibody-dependent cellular cytotoxicity of a cell line that was negative for TAG-72 antigen. Importantly, the antibody-dependent cellular cytotoxicity activity of the bispecific antibody was significantly greater than that of the monoclonal antibody HCC49. These in vitro data indicate that the humanized bispecific antibody HCC49xH22 has the appropriate specificity and functional activity for further evaluation as potential immunotherapy for TAG-72-positive malignancies.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016513 Mice, SCID Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice. SCID Mice,SCID-hu Mice,Severe Combined Immunodeficient Mice,Immunodeficient Mice, Severe Combined,Mouse, SCID,Mouse, SCID-hu,Mice, SCID-hu,Mouse, SCID hu,SCID Mouse,SCID hu Mice,SCID-hu Mouse

Related Publications

C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
September 1997, Cancer research,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
January 2009, Leukemia,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
December 2019, Monoclonal antibodies in immunodiagnosis and immunotherapy,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
February 1996, Clinical immunology and immunopathology,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
December 2000, Virology,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
March 2006, The Journal of biological chemistry,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
May 1993, Cancer immunology, immunotherapy : CII,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
July 2021, Scientific reports,
C Russoniello, and C Somasundaram, and J Schlom, and Y M Deo, and T Keler
November 1990, Japanese journal of cancer research : Gann,
Copied contents to your clipboard!