Impaired spatial learning after saturation of long-term potentiation. 1998

E I Moser, and K A Krobert, and M B Moser, and R G Morris
Department of Psychology, Norwegian University of Science and Technology, 7034 Trondheim, Norway.

If information is stored as activity-driven increases in synaptic weights in the hippocampal formation, saturation of hippocampal long-term potentiation (LTP) should impair learning. Here, rats in which one hippocampus had been lesioned were implanted with a multielectrode stimulating array across and into the angular bundle afferent to the other hippocampus. Repeated cross-bundle tetanization caused cumulative potentiation. Residual synaptic plasticity was assessed by tetanizing a naïve test electrode in the center of the bundle. Spatial learning was disrupted in animals with no residual LTP (<10 percent) but not in animals that were capable of further potentiation. Thus, saturation of hippocampal LTP impairs spatial learning.

UI MeSH Term Description Entries
D008297 Male Males
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004567 Electrodes, Implanted Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body. Implantable Electrodes,Implantable Stimulation Electrodes,Implanted Electrodes,Implanted Stimulation Electrodes,Electrode, Implantable,Electrode, Implantable Stimulation,Electrode, Implanted,Electrode, Implanted Stimulation,Electrodes, Implantable,Electrodes, Implantable Stimulation,Electrodes, Implanted Stimulation,Implantable Electrode,Implantable Stimulation Electrode,Implanted Electrode,Implanted Stimulation Electrode,Stimulation Electrode, Implantable,Stimulation Electrode, Implanted,Stimulation Electrodes, Implantable,Stimulation Electrodes, Implanted
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013746 Tetany A disorder characterized by muscle twitches, cramps, and carpopedal spasm, and when severe, laryngospasm and seizures. This condition is associated with unstable depolarization of axonal membranes, primarily in the peripheral nervous system. Tetany usually results from HYPOCALCEMIA or reduced serum levels of MAGNESIUM that may be associated with HYPERVENTILATION; HYPOPARATHYROIDISM; RICKETS; UREMIA; or other conditions. (From Adams et al., Principles of Neurology, 6th ed, p1490) Spasmophilia,Tetany, Neonatal,Tetanilla,Neonatal Tetanies,Neonatal Tetany,Spasmophilias,Tetanies,Tetanies, Neonatal,Tetanillas
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

E I Moser, and K A Krobert, and M B Moser, and R G Morris
April 1993, Hippocampus,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
December 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
June 1996, Neuroscience letters,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
December 1992, Science (New York, N.Y.),
E I Moser, and K A Krobert, and M B Moser, and R G Morris
January 1992, Cold Spring Harbor symposia on quantitative biology,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
November 1995, Nature,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
March 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
December 2019, Neurobiology of learning and memory,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
January 1996, Annual review of psychology,
E I Moser, and K A Krobert, and M B Moser, and R G Morris
August 2014, Anesthesiology,
Copied contents to your clipboard!