Diencephalic and mesencephalic projections to rhombencephalic reticular nuclei in lampreys. 1998

I C Zompa, and R Dubuc
Centre de Recherche en Sciences Neurologiques, Université de Montréal, Québec, Canada.

Behavioral studies in lampreys of the northern genera, Ichthyomyzon, reveal that sensory inputs initiate and modulate locomotion by activation of reticulospinal (RS) neurones, which constitute the primary descending system involved in motor activity. The interneurones relaying afferent vestibular, trigeminal, lateral line, cutaneous and proprioceptive inputs are localized in the rhombencephalic region of the lamprey brainstem, unlike the visual inputs that are relayed in the mesencephalic region. The knowledge of diencephalic-mesencephalic cell distributions that project to the RS neurones is limited. They were isolated by iontophoretically injecting cobalt-lysine in vitro into the middle (MRRN) and posterior (PRRN) rhombencephalic reticular nuclei of Petromyzon marinus and Ichthyomyzon unicuspis, Fourteen of 31 injections were successful (MRRN, 7; PRRN, 7). Cell groups were labeled ipsilateral to the injection site in the thalamus (corpi geniculati; pars dorsalis thalami lateralis and medialis; nucleus (n.) subhabenularis lateralis), in the epithalamus (n. commissura posteriori) and in the pretectum. Cell groups were labeled bilaterally within the dorsal region along the diencephalic-mesencephalic border (caudal pretectum and rostral tectum opticum), in tectum opticum, torus semicircularis, and tegmentum mesencephali. There were more backfilled cells from MRRN injections (538-6466 cells) than from PRRN injections (53-553 cells) (MW Rank Sum, p < 0.001). The cell bodies were less than 40 microns long ipsilateral to the injection site, and longer contralaterally. Those greater than 50 microns were backfilled from PRRN injections. The location and organization of the cell groups identified is comparable to that of other vertebrates.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012249 Rhombencephalon The posterior of the three primitive cerebral vesicles of an embryonic brain. It consists of myelencephalon, metencephalon, and isthmus rhombencephali from which develop the major BRAIN STEM components, such as MEDULLA OBLONGATA from the myelencephalon, CEREBELLUM and PONS from the metencephalon, with the expanded cavity forming the FOURTH VENTRICLE. Hindbrain,Hind Brain,Brain, Hind,Brains, Hind,Hind Brains,Hindbrains,Rhombencephalons

Related Publications

I C Zompa, and R Dubuc
December 1967, Electroencephalography and clinical neurophysiology,
I C Zompa, and R Dubuc
November 2013, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology,
I C Zompa, and R Dubuc
September 1975, Brain research,
I C Zompa, and R Dubuc
July 1951, Comptes rendus des seances de la Societe de biologie et de ses filiales,
I C Zompa, and R Dubuc
November 2016, Brain structure & function,
I C Zompa, and R Dubuc
January 1979, Progress in brain research,
Copied contents to your clipboard!