Genetic damage induced by methylglyoxal and methylglyoxal plus X-rays in Drosophila melanogaster germinal cells. 1998

B M Barnett, and E R Muñoz
Radiobiología-Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429, Buenos Aires, Argentina.

The effect of methylglyoxal (MG) and MG administered prior to X-irradiation was investigated in Drosophila melanogaster germinal cells using the sex-linked recessive lethal (s.l.r.l.), II-III autosomal translocation (AT) and X-chromosome nondisjunction (ND) tests. For the s.l.r.l. test the males were either injected with MG (0.5 M, 0.75 M or 1.7 M) or fed for 24 h (1 M) and two 24 h broods (A and B) were obtained. For the AT test the males were injected with MG 1.7 M and the same brooding scheme was followed. ND was tested in females fed on MG 1 M. The only effect observed after MG treatment was a significant increase on the yield of s.l.r.l. with MG 1.7 M. In the combined treatments MG was administered prior to irradiation with 20 Gy of X-rays and the induction of s.l.r.l. and AT was assessed. Pre-treatment with MG 0.75 M and 1.7 M enhanced the frequency of s.l.r.l. in cells sampled in brood B, consisting mainly of the rather hypoxic late spermatids. It is suggested that this radiosensitizing effect could be ascribed to a decrease in the level of glutathione due to the metabolization of MG.

UI MeSH Term Description Entries
D008297 Male Males
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009630 Nondisjunction, Genetic The failure of homologous CHROMOSOMES or CHROMATIDS to segregate during MITOSIS or MEIOSIS with the result that one daughter cell has both of a pair of parental chromosomes or chromatids and the other has none. Genetic Non-Disjunction,Genetic Nondisjunction,Non-Disjunction, Genetic,Genetic Non Disjunction,Genetic Non-Disjunctions,Genetic Nondisjunctions,Non Disjunction, Genetic,Non-Disjunctions, Genetic,Nondisjunctions, Genetic
D011765 Pyruvaldehyde An organic compound used often as a reagent in organic synthesis, as a flavoring agent, and in tanning. It has been demonstrated as an intermediate in the metabolism of acetone and its derivatives in isolated cell preparations, in various culture media, and in vivo in certain animals. Acetylformaldehyde,Methylglyoxal,Oxopropanal,Pyruvic Aldehyde,Aldehyde, Pyruvic
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes

Related Publications

B M Barnett, and E R Muñoz
June 1975, International journal of radiation biology and related studies in physics, chemistry, and medicine,
B M Barnett, and E R Muñoz
August 1970, Mutation research,
B M Barnett, and E R Muñoz
January 1967, International journal of radiation biology and related studies in physics, chemistry, and medicine,
B M Barnett, and E R Muñoz
July 1976, Molecular & general genetics : MGG,
B M Barnett, and E R Muñoz
August 1979, Mutation research,
B M Barnett, and E R Muñoz
February 1930, Proceedings of the National Academy of Sciences of the United States of America,
B M Barnett, and E R Muñoz
August 1940, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!