Physiological regulation of eukaryotic topoisomerase II. 1998

R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.

Topoisomerase II is an essential enzyme in all organisms with several independent roles in DNA metabolism. In this article we review our knowledge on the regulation of the expression and catalytic activity of topoisomerase II in both lower and higher eukaryotes. Current data indicate that the regulation of topoisomerase II gene expression is complex, with positive and negative controls in evidence at the level of both promoter activity and mRNA stability. Similarly, the activity of the mature enzyme can be regulated by the action of several different protein kinases. Of particular interest is the cell cycle-dependent phosphorylation of topoisomerase II, including multiple, mitosis-specific modifications, which are proposed to regulate the essential chromosome decatenation activity of the enzyme.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell

Related Publications

R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
March 1998, BioEssays : news and reviews in molecular, cellular and developmental biology,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
July 1986, The Journal of biological chemistry,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
January 1994, Journal of molecular biology,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
January 2009, Methods in molecular biology (Clifton, N.J.),
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
January 2003, Current topics in medicinal chemistry,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
May 1985, Proceedings of the National Academy of Sciences of the United States of America,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
November 1988, Biochemistry,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
May 1994, FEBS letters,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
April 1992, Nucleic acids research,
R J Isaacs, and S L Davies, and M I Sandri, and C Redwood, and N J Wells, and I D Hickson
May 2001, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!