Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. 1998

N Quan, and M Whiteside, and M Herkenham
Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, MD 20892-4070, USA.

Inducible cyclooxygenase 2 (COX 2) converts arachidonic acid to prostaglandins, which are thought to mediate various peripheral lipopolysaccharide (LPS)-induced central effects, including generation of fever and activation of the hypothalamic-pituitary-adrenal axis. To localize prostaglandin production in the brain following peripheral LPS administration, COX 2 mRNA expression was examined by in situ hybridization histochemistry in rats injected intraperitoneally (i.p.) or intravenously (i.v.) with various doses of LPS or saline. Constitutive expression of COX 2 mRNA was found in neurons of cortex, hippocampus, and amygdala, but not in cells of the blood vessels. COX 2 mRNA levels were not altered in saline-injected animals as compared to non-injected controls. In LPS-injected animals, no consistent changes of neuronal COX 2 mRNA expression were observed. COX 2 mRNA expression appeared ex novo at 0.5-h post-injection in cells closely associated with blood vessels, however, ex novo labeling of the number of labeled cells increased to a peak at 2 h and subsided gradually to basal levels by 24 h. Initially, labeling was observed in cells comprising major surface-lying blood vessels and meninges. Later, vascular and perivascular cells associated with smaller penetrating blood vessels were labeled. This pattern of COX 2 mRNA induction is independent of the route and dose of the LPS injection. The induced COX 2 mRNA producing cells are identified as endothelial and leptomeningeal cells. Changes in COX 2 mRNA expression were not observed in circumventricular organs. These results suggest that peripheral LPS induces a rapid increase in COX 2 production throughout the vasculatures of the brain, which could affect the neuronal activity of widespread brain regions by elevating the levels of prostaglandins.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Quan, and M Whiteside, and M Herkenham
June 2000, Bulletin of experimental biology and medicine,
N Quan, and M Whiteside, and M Herkenham
August 2003, The Journal of comparative neurology,
N Quan, and M Whiteside, and M Herkenham
October 2006, Journal of cataract and refractive surgery,
N Quan, and M Whiteside, and M Herkenham
July 1996, FEBS letters,
N Quan, and M Whiteside, and M Herkenham
November 1999, Journal of neuropathology and experimental neurology,
N Quan, and M Whiteside, and M Herkenham
November 1996, Biochimica et biophysica acta,
N Quan, and M Whiteside, and M Herkenham
October 2007, Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences,
Copied contents to your clipboard!