Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. 1998

R J Reid, and P Benedetti, and M A Bjornsti
Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 S. 10th St., Philadelphia, PA 19107, USA.

The budding yeast Saccharomyces cerevisiae has been exploited to investigate the cytotoxic mechanisms of drugs that target DNA topoisomerases. This model organism has been used to establish eukaryotic DNA topoisomerase I or II as the cellular target of specific antineoplastic agents, to define mutations in these enzymes that confer drug resistance and to elucidate the cellular factors that modulate cell sensitivity to DNA topoisomerase-targeted drugs. These findings have provided valuable insights into the critical activities of these enzymes and how perturbing their functions produces DNA damage and cell death.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D059004 Topoisomerase I Inhibitors Compounds that inhibit the activity of DNA TOPOISOMERASE I. DNA Topoisomerase I Inhibitor,DNA Topoisomerase III Inhibitor,DNA Topoisomerase III Inhibitors,DNA Type 1 Topoisomerase Inhibitor,DNA Type III Topoisomerase Inhibitor,DNA Type III Topoisomerase Inhibitors,Topoisomerase 1 Inhibitor,Topoisomerase 1 Inhibitors,Topoisomerase 3 Inhibitor,Topoisomerase 3 Inhibitors,Topoisomerase I Inhibitor,Topoisomerase III Inhibitor,Topoisomerase III Inhibitors,DNA Topoisomerase I Inhibitors,DNA Type 1 Topoisomerase Inhibitors,1 Inhibitor, Topoisomerase,3 Inhibitor, Topoisomerase,3 Inhibitors, Topoisomerase,I Inhibitor, Topoisomerase,III Inhibitor, Topoisomerase,III Inhibitors, Topoisomerase,Inhibitor, Topoisomerase 1,Inhibitor, Topoisomerase 3,Inhibitor, Topoisomerase I,Inhibitor, Topoisomerase III,Inhibitors, Topoisomerase 1,Inhibitors, Topoisomerase 3,Inhibitors, Topoisomerase I,Inhibitors, Topoisomerase III
D059005 Topoisomerase II Inhibitors Compounds that inhibit the activity of DNA TOPOISOMERASE II. Included in this category are a variety of ANTINEOPLASTIC AGENTS which target the eukaryotic form of topoisomerase II and ANTIBACTERIAL AGENTS which target the prokaryotic form of topoisomerase II. DNA Gyrase Inhibitor,DNA Topoisomerase II Inhibitor,Topoisomerase 2 Inhibitors,Topoisomerase II Inhibitor,DNA Gyrase Inhibitors,DNA Topoisomerase II Inhibitors,DNA Type 2 Topoisomerase Inhibitors,Gyrase Inhibitor, DNA,Gyrase Inhibitors, DNA,II Inhibitor, Topoisomerase,Inhibitor, DNA Gyrase,Inhibitor, Topoisomerase II,Inhibitors, DNA Gyrase,Inhibitors, Topoisomerase 2,Inhibitors, Topoisomerase II

Related Publications

R J Reid, and P Benedetti, and M A Bjornsti
January 2001, Methods in molecular biology (Clifton, N.J.),
R J Reid, and P Benedetti, and M A Bjornsti
January 1994, Advances in pharmacology (San Diego, Calif.),
R J Reid, and P Benedetti, and M A Bjornsti
April 2004, Briefings in functional genomics & proteomics,
R J Reid, and P Benedetti, and M A Bjornsti
October 1998, Biochimica et biophysica acta,
R J Reid, and P Benedetti, and M A Bjornsti
August 1997, Science (New York, N.Y.),
R J Reid, and P Benedetti, and M A Bjornsti
December 2015, BMC systems biology,
R J Reid, and P Benedetti, and M A Bjornsti
June 2011, Postepy higieny i medycyny doswiadczalnej (Online),
R J Reid, and P Benedetti, and M A Bjornsti
June 2004, Discovery medicine,
R J Reid, and P Benedetti, and M A Bjornsti
November 2001, Experimental cell research,
R J Reid, and P Benedetti, and M A Bjornsti
December 2010, FEMS yeast research,
Copied contents to your clipboard!