Organization and structure of NADH-dependent glutamate synthase gene from rice plants. 1998

S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
Department of Life Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.

Genomic clones for NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) were obtained from a genomic library of rice (Oryza sativa L. cv. Sasanishki). A genomic clone (lambdaOS42, 14 kb) covered an entire structural gene and a 3.7 kb 5'-upstream region from the first methionine. Another clone (lambdaOS23, 14 kb) contained a 2.8 kb 3'-downstream region from the stop codon. A 7047 bp long clone (lambdaOSR51) consisting of full length cDNA for NADH-GOGAT was isolated from a cDNA library prepared using mRNA from roots of rice seedlings treated with 1 mM NH4Cl for 12 h. The presumed transcribed region (11.7 kb) consisted of 23 exons separated by 22 introns. Rice NADH-GOGAT is synthesized as a 2166 amino acid protein with a molecular mass of 236.7 kDa that includes a 99 amino acid presequence. DNA gel blot analysis suggested that NADH-GOGAT occurred as a single gene in rice. Primer extension experiments map the transcription start of NADH-GOGAT to identical positions. The 3. 7 kb 5'-upstream region was able to transiently express a reporter gene in cultured rice cells. Putative motifs related to the regulation of NADH-GOGAT gene expression were looked for within the 5'-upstream region by database.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005970 Glutamate Synthase An enzyme that catalyzes the formation of 2 molecules of glutamate from glutamine plus alpha-ketoglutarate in the presence of NADPH. EC 1.4.1.13. Glutamine Ketoglutarate Amidotransferase,Ketoglutarate Glutamine Amidotransferase,Amidotransferase, Glutamine Ketoglutarate,Amidotransferase, Ketoglutarate Glutamine,Glutamine Amidotransferase, Ketoglutarate,Ketoglutarate Amidotransferase, Glutamine,Synthase, Glutamate
D000594 Amino Acid Oxidoreductases A class of enzymes that catalyze oxidation-reduction reactions of amino acids. Acid Oxidoreductases, Amino,Oxidoreductases, Amino Acid
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
April 1992, Plant physiology,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
September 1995, The Plant journal : for cell and molecular biology,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
February 1999, Plant physiology,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
December 1979, FEBS letters,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
February 1993, The Plant cell,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
September 1979, European journal of biochemistry,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
January 1980, Biochemical and biophysical research communications,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
April 1982, Plant physiology,
S Goto, and T Akagawa, and S Kojima, and T Hayakawa, and T Yamaya
November 1999, Plant physiology,
Copied contents to your clipboard!