Modulation of bradykinin-induced mechanical hyperalgesia in the rat by activity in abdominal vagal afferents. 1998

S G Khasar, and J P Miao, and W Jänig, and J D Levine
Department of Anatomy, University of California at San Francisco, 94143-0452, USA.

Bradykinin-induced plasma extravasation and mechanical hyperalgesia are sympathetic-dependent components of inflammation. Noxious stimulation has been found to inhibit bradykinin-induced plasma extravasation by activating the hypothalamo-pituitary-adrenal axis. The sensitivity of this nociceptive-neuroendocrine feedback control of inflammation is modulated by activity in subdiaphragmatic vagal afferents. In the present study, we tested the hypothesis that activity in the subdiaphragmatic vagus also modifies bradykinin-induced mechanical hyperalgesia in the rat, using the Randall-Selitto method. Following subdiaphragmatic vagotomy, the baseline paw-withdrawal threshold to mechanical stimulation decreased and bradykinin-induced mechanical hyperalgesia was enhanced. Mechanical hyperalgesia produced by prostaglandin E2, a direct-acting hyperalgesic agent, was not significantly affected by vagotomy. The effect of subdiaphragmatic vagotomy on bradykinin-induced hyperalgesia, but not on baseline paw-withdrawal threshold, was mimicked by coeliac branch vagotomy. Indomethacin blocked the hyperalgesia in normal rats, but not in vagotomized rats, suggesting that bradykinin-induced hyperalgesia in normal rats is mediated by prostaglandins, whose role was unexpectedly diminished after vagotomy. Bradykinin-induced hyperalgesia in normal rats was abolished by lumbar sympathectomy but not by sympathetic decentralization (cutting the preganglionic axons). In rats that were both vagotomized and sympathectomized, hyperalgesia induced by low-dose bradykinin was no longer present. These results demonstrate that vagotomy induces a decrease in baseline mechanical paw-withdrawal threshold and an enhancement of bradykinin-induced mechanical hyperalgesia and suggest that these phenomena are generated by actions in peripheral tissues.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008297 Male Males
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013562 Sympathectomy The removal or interruption of some part of the sympathetic nervous system for therapeutic or research purposes. Denervation, Sympathetic,Sympathetic Denervation,Denervations, Sympathetic,Sympathectomies,Sympathetic Denervations
D014628 Vagotomy The interruption or removal of any part of the vagus (10th cranial) nerve. Vagotomy may be performed for research or for therapeutic purposes. Vagotomies
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

S G Khasar, and J P Miao, and W Jänig, and J D Levine
December 2019, Neurogastroenterology and motility,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
April 2005, American journal of physiology. Regulatory, integrative and comparative physiology,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
January 2005, Folia medica Cracoviensia,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
September 2014, Neuroscience,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
July 1981, Quarterly journal of experimental physiology (Cambridge, England),
S G Khasar, and J P Miao, and W Jänig, and J D Levine
November 1978, The Journal of physiology,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
December 2008, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
April 1983, Archives italiennes de biologie,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
September 1994, British journal of pharmacology,
S G Khasar, and J P Miao, and W Jänig, and J D Levine
January 2004, The Journal of physiology,
Copied contents to your clipboard!