A robust method for determining DNA binding constants using capillary zone electrophoresis. 1998

C Li, and L M Martin
College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881-0809, USA.

Capillary zone electrophoresis (CZE or CE) with on-line UV detection was utilized to measure the binding constants between purified calf thymus DNA and a library of designed tetrapeptides which had been constructed using unnatural amino acids with thiazole ring side chains. Mixtures containing a constant amount of a tetrapeptide, the neutral marker (mesityl oxide), and varying concentrations of DNA were prepared and equilibrated at 8 degreesC for 12 h. CE was then utilized to separate unbound tetrapeptides from the DNA-peptide complex. The UV absorbance of the peak representing unbound tetrapeptide decreased incrementally as a result of increasing the concentration of DNA in the equilibrium mixture. The absorbance of the peak corresponding to the unbound tetrapeptide was obtained directly from the electropherogram and used in the calculation of the DNA-peptide binding constants. The binding constant for each tetrapeptide to calf thymus DNA was obtained from the negative slope of a Scatchard plot and a comparison of the binding constants for different peptides showed that the tetrapeptides in the library have DNA-binding affinities ranging from 10(2) to 10(6) M-1.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D019075 Electrophoresis, Capillary A highly-sensitive (in the picomolar range, which is 10,000-fold more sensitive than conventional electrophoresis) and efficient technique that allows separation of PROTEINS; NUCLEIC ACIDS; and CARBOHYDRATES. (Segen, Dictionary of Modern Medicine, 1992) Capillary Zone Electrophoresis,Capillary Electrophoreses,Capillary Electrophoresis,Capillary Zone Electrophoreses,Electrophoreses, Capillary,Electrophoreses, Capillary Zone,Electrophoresis, Capillary Zone,Zone Electrophoreses, Capillary,Zone Electrophoresis, Capillary

Related Publications

C Li, and L M Martin
September 1992, Journal of chromatography,
C Li, and L M Martin
February 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
C Li, and L M Martin
April 1999, Journal of chromatography. B, Biomedical sciences and applications,
C Li, and L M Martin
January 1993, Electrophoresis,
C Li, and L M Martin
October 2012, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
C Li, and L M Martin
May 2000, Journal of chromatography. A,
Copied contents to your clipboard!