The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. 1998

M Dieckelmann, and L A Johnson, and I R Beacham
School of Biomolecular and Biomedical Science, Griffith University, Nathan, Brisbane, Queensland, Australia.

Strains of Pseudomonas fluorescens and Ps. fragi are the predominant psychrotrophs found in raw milk and may cause spoilage due to the secretion of hydrolytic enzymes such as lipase and protease. The diversity of lipases has been examined in Pseudomonas isolates from raw milk which represent different taxonomic groups (phenons). Significant diversity was found using both DNA hybridization and immunoblotting techniques, which has implications for the development of a diagnostic test. The lipase-encoding gene (lipA) was cloned from one strain, C9, of Ps. fluorescens biovar V. In contrast to previously reported lipase sequences from Ps. fluorescens, the gene encodes a lipase of M(r) 33 kDa. Alignment of all known Pseudomonas and Burkholderia lipase amino acid sequences indicates the existence of two major groups, one of M(r) approximately 30 kDa comprising sequences from Ps. fragi, Ps. aeruginosa, Ps. fluorescens C9 and Burkholderia, and one of approximately 50 kDa comprising Ps. fluorescens lipases. The lipase from C9 does not contain a signal peptide and is presumed to be secreted via a signal peptide-independent pathway. The lipA gene of strain C9 was disrupted by insertional mutagenesis. The mutant retained its lipolytic phenotype, strongly suggesting the presence of a second lipase in this strain.

UI MeSH Term Description Entries
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011551 Pseudomonas fluorescens A species of nonpathogenic fluorescent bacteria found in feces, sewage, soil, and water, and which liquefy gelatin. Bacillus fluorescens,Bacillus fluorescens liquefaciens,Bacterium fluorescens,Liquidomonas fluorescens
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions

Related Publications

M Dieckelmann, and L A Johnson, and I R Beacham
September 2001, Applied and environmental microbiology,
M Dieckelmann, and L A Johnson, and I R Beacham
June 2001, Journal of applied microbiology,
M Dieckelmann, and L A Johnson, and I R Beacham
October 2005, Molecular biotechnology,
M Dieckelmann, and L A Johnson, and I R Beacham
November 1977, Biochimica et biophysica acta,
M Dieckelmann, and L A Johnson, and I R Beacham
January 1978, Prikladnaia biokhimiia i mikrobiologiia,
M Dieckelmann, and L A Johnson, and I R Beacham
February 1983, The Journal of dairy research,
M Dieckelmann, and L A Johnson, and I R Beacham
April 2022, Current genetics,
M Dieckelmann, and L A Johnson, and I R Beacham
January 1992, Revista Argentina de microbiologia,
M Dieckelmann, and L A Johnson, and I R Beacham
February 2018, International journal of biological macromolecules,
Copied contents to your clipboard!