Dietary protein restriction alters glucose but not protein metabolism in non-insulin-dependent diabetes mellitus. 1998

L J Hoffer, and A Taveroff, and M J Hamadeh
McGill Nutrition and Food Science Centre and the School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada.

We determined whether a customary diet high or low in protein (1) influences postabsorptive amino acid catabolism, nitrogen (N) balance, and hepatic glucose output (HGO) in normal subjects or patients with non-insulin-dependent diabetes mellitus (NIDDM) or (2) alters blood glucose levels in NIDDM. Eight normal young adults and five obese middle-aged persons with NIDDM consumed low-protein (0.8 g/kg lean body mass [LBM]) or high-protein (3.0 g/kg LBM) diets at maintenance energy for consecutive 7-day periods. Fasting and average blood glucose and N balance were measured daily. The level of dietary protein had no effect on the basal plasma leucine rate of appearance (Ra) or urinary 3-methylhistidine excretion in either subject group. Basal leucine oxidation (and by inference, whole-body amino acid catabolism) was reduced on the low-protein diet but basal HGO was not, and although exogenous glucose effectively suppressed HGO, it did not reduce leucine oxidation with either diet. After adaptation to the low-protein diet, N balance in both the normal and NIDDM subjects was close to zero. The low-protein diet reduced the fasting and daily blood glucose of the diabetic subjects by approximately 2 mmol/L (P < .05). We conclude that physiologic variation in dietary protein does not affect basal whole-body protein turnover or HGO in either normal young adults or obese middle-aged NIDDM subjects. However, protein restriction to the level of the average daily requirement significantly reduces postabsorptive and average daily blood glucose concentrations in persons with NIDDM.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

L J Hoffer, and A Taveroff, and M J Hamadeh
February 1998, The Journal of nutrition,
L J Hoffer, and A Taveroff, and M J Hamadeh
January 1996, The American journal of physiology,
L J Hoffer, and A Taveroff, and M J Hamadeh
November 1996, The Journal of clinical endocrinology and metabolism,
L J Hoffer, and A Taveroff, and M J Hamadeh
February 1998, The Journal of nutrition,
L J Hoffer, and A Taveroff, and M J Hamadeh
September 1992, The New England journal of medicine,
L J Hoffer, and A Taveroff, and M J Hamadeh
June 1997, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS),
L J Hoffer, and A Taveroff, and M J Hamadeh
July 1999, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine],
L J Hoffer, and A Taveroff, and M J Hamadeh
September 1988, The New England journal of medicine,
L J Hoffer, and A Taveroff, and M J Hamadeh
May 1998, The Journal of clinical endocrinology and metabolism,
L J Hoffer, and A Taveroff, and M J Hamadeh
January 1996, Annals of internal medicine,
Copied contents to your clipboard!