Electrophysiological correlates of sleep delta waves. 1998

F Amzica, and M Steriade
Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada.

Recent studies have disclosed several oscillations occurring during resting sleep within the frequency range of the classical delta band (0.5-4 Hz). There are at least 3 oscillations with distinct mechanisms and sites of origin: a slow (<1 Hz) cortically-generated oscillation, a clock-like thalamic oscillation (1-4 Hz), and a cortical oscillation (1-4 Hz). The present paper reviews data on these oscillations and the possible mechanisms which coalesce them into the polymorphic waves of slow wave sleep. Data stem from intracellular (over 500 single cell and 50 double impalements) and field potentials recorded from the cortex and thalamus of cats (120 animals) under ketamine and xylazine anesthesia. Other experiments were based on whole night EEG recordings from humans (5 subjects). The frequency of the slow oscillation both in anesthetized animals and in naturally sleeping humans ranged between 0.1 and 1 Hz (89% of the cases being between 0.5 and 0.9 Hz). The slow (<1 Hz) oscillation is reflected in the EEG as rhythmic sequences of surface-negative waves (associated with hyperpolarizations of deeply-lying neurons) and surface-positive K-complexes (representing excitation in large pools of cortical neurons). Through its long-range synchronization, the slow oscillation has the ability to trigger and to group thalamically-generated spindles and two delta (1-4 Hz) oscillations. Finally, it is argued that the analysis of the electroencephalogram should transcend the spectral analyses, by taking into account the shape of the waves and, when possible, the basic mechanisms that generate those waves.

UI MeSH Term Description Entries
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003700 Delta Rhythm Brain waves seen on EEG characterized by a high amplitude and a frequency of 4 Hz and below. They are considered the "deep sleep waves" observed during sleep in dreamless states, infancy, and in some brain disorders. Delta Rhythms,Rhythm, Delta,Rhythms, Delta
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012890 Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Sleep Habits,Sleeping Habit,Sleeping Habits,Habit, Sleep,Habit, Sleeping,Habits, Sleep,Habits, Sleeping,Sleep Habit

Related Publications

F Amzica, and M Steriade
October 2005, NeuroImage,
F Amzica, and M Steriade
January 2015, Current topics in behavioral neurosciences,
F Amzica, and M Steriade
April 1999, Psychiatry and clinical neurosciences,
F Amzica, and M Steriade
April 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F Amzica, and M Steriade
January 2011, Progress in brain research,
F Amzica, and M Steriade
May 2000, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
F Amzica, and M Steriade
February 2010, European journal of applied physiology,
F Amzica, and M Steriade
July 2019, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!