Real time detection of DNA.RNA hybridization in living cells. 1998

D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
Department of Pathology and Laboratory Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA.

Demonstrating hybridization between an antisense oligodeoxynucleotide and its mRNA target has proven to be extremely difficult in living cells. To address this fundamental problem in antisense research, we synthesized "molecular beacon" (MB) reporter oligodeoxynucleotides with matched fluorescent donor and acceptor chromophores on their 5' and 3' ends. In the absence of a complementary nucleic acid strand, the MB remains in a stem-loop conformation where fluorescence resonance energy transfer prevents signal emission. On hybridization with a complementary sequence, the stem-loop structure opens increasing the physical distance between the donor and acceptor moieties thereby reducing fluorescence resonance energy transfer and allowing a detectable signal to be emitted when the beacon is excited by light of the appropriate wavelength. Solution hybridization studies revealed that in the presence of a complementary strand targeted MB could yield up to a 60-fold increase in fluorescence intensity in comparison to control MB. By using a fluorescence microscope fitted with UV fluoride lenses, the detection limit of preformed MB/target sequence duplexes microinjected into cells was found to be >/=1 x 10(-1) ag of MB, or approximately 10 molecules of mRNA. On the basis of this exquisite sensitivity, real-time detection of MB/target mRNA hybridization in living cells was attempted by microinjecting MB targeted to the vav protooncogene, or control MB, into K562 human leukemia cells. Within 15 min, confocal microscopy revealed fluorescence in cells injected with targeted, but not control, MB. These studies suggest that real-time visualization and localization of oligonucleotide/mRNA interactions is now possible. MB could find utility in studying RNA processing, trafficking, and folding in living cells. We hypothesize that MB may also prove useful for finding targetable mRNA sequence under physiologic conditions.

UI MeSH Term Description Entries
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009282 Naphthalenesulfonates A class of organic compounds that contains a naphthalene moiety linked to a sulfonic acid salt or ester.
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004124 p-Dimethylaminoazobenzene A reagent used mainly to induce experimental liver cancer. According to the Fourth Annual Report on Carcinogens (NTP 85-002, p. 89) published in 1985, this compound "may reasonably be anticipated to be a carcinogen." (Merck, 11th ed) Butter Yellow,Dimethylaminoazobenzene,4-Dimethylaminoazobenzene,Methyl Yellow,p-Dimethylaminoazobenzene, (E)-Isomer,p-Dimethylaminoazobenzene, (Z)-Isomer,4 Dimethylaminoazobenzene,p Dimethylaminoazobenzene
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
November 2001, Analytical chemistry,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
October 2019, Analytica chimica acta,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
August 2022, RSC advances,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
October 2013, Chemical communications (Cambridge, England),
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
September 2010, Current biology : CB,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
January 2017, The Journal of cell biology,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
December 2019, Sensors (Basel, Switzerland),
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
June 2007, Acta pharmacologica Sinica,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
February 1997, Experimental cell research,
D L Sokol, and X Zhang, and P Lu, and A M Gewirtz
May 2015, ACS nano,
Copied contents to your clipboard!