Immortalized gonadotropin-releasing hormone neurons secrete gamma-aminobutyric acid-evidence for an autocrine regulation. 1998

G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
Institut für Anatomie, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Germany. ahnert@rz.charite.hu-berlin.de

The immortalized hypothalamic neuronal cell lines GT1-1 and GT1-7 represent unique model systems to investigate the physiological control of gonadotropin-releasing hormone (GnRH) secretion. Using immunofluorescence microscopy, key proteins of regulated exocytosis, e.g. synaptotagmin, synaptobrevin and SNAP-25 (synaptosomal associated protein of 25 kDa) were found in GT1 neurons. In addition, GT1 neurons contained synaptophysin, a marker protein for small synaptic vesicles (SSVs) which are responsible for the storage of neurotransmitters such as gamma-aminobutyric acid (GABA). Upon subcellular fractionation, a lighter vesicle population characterized by synaptophysin separated from a denser vesicle population containing GnRH. Both vesicle populations contained synaptobrevin and synaptotagmin. Besides GnRH, GT1 neurons expressed glutamic acid decarboxylase at the mRNA-level and synthesized GABA. More importantly, GT1 neurons took up and stored 3H-GABA. The stored GABA was released after stimulation with increasing K+ concentrations and by alpha-latrotoxin. Reducing the extracellular Ca2+-concentration abolished stimulated secretion, indicating that GABA was released by regulated exocytosis. Hormone secretion from GT1 neurons is controlled by GABA via GABA(A) and GABA(B) receptors reflecting the situation in vivo. Our data provide the first evidence that GT1 neurons possess a second regulated secretory pathway sustained by SSVs storing and releasing GABA. The released GABA influences GnRH secretion by an auto- or paracrine loop.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013111 Spider Venoms Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL. Araneid Venoms,Spider Toxin,Spider Toxins,Tarantula Toxin,Tarantula Toxins,Tarantula Venom,Araneid Venom,Spider Venom,Tarantula Venoms,Toxin, Spider,Toxin, Tarantula,Toxins, Spider,Toxins, Tarantula,Venom, Araneid,Venom, Spider,Venom, Tarantula,Venoms, Araneid,Venoms, Spider,Venoms, Tarantula

Related Publications

G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
December 2005, Endocrinology,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
November 1993, Endocrinology,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
January 1992, Ciba Foundation symposium,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
December 2002, Molecular endocrinology (Baltimore, Md.),
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
March 1999, Endocrinology,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
January 2010, Endocrinology,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
March 2004, Endocrinology,
G Ahnert-Hilger, and M John, and U Kistner, and B Wiedenmann, and H Jarry
January 2000, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Copied contents to your clipboard!