TNF-alpha and TGF-beta act synergistically to kill Schwann cells. 1998

A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
Department of Neurology, Wayne State University School of Medicine, 6E-University Health Center, Detroit, Michigan 48201, USA.

Interactions between cytokines and Schwann cells (SC) are important in development, repair, and disorders of the peripheral nervous system (PNS). Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) are two prominent cytokines which may be involved in these processes and their gene products are upregulated in some experimental neuropathies. This study focuses on the in vitro effects of these cytokines, both singly and in combination, on cultured SC. Expression of both Type I and Type II TNF-alpha receptors was demonstrated on the SC surface by immunocytochemistry. Treatment of SC with a combination of TNF-alpha plus TGF-beta causes significant detachment and cell death while treatment with each cytokine alone is not significantly cytotoxic. When compared with control cultures, SC treated with the combination of cytokines exhibit an increase in the number of cells with condensed nuclei and evidence of DNA fragmentation, characteristics consistent with cells undergoing programmed cell death. Thus, TNF-alpha plus TGF-beta induce SC loss of adhesion which is predominantly due to cell death. Apoptotic mechanisms are likely to contribute to some extent to this cell death. These findings provide in vitro evidence to support the hypothesis that cytokines can directly damage SC in PNS disorders.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
July 2006, Molecular cancer therapeutics,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
July 2008, The Journal of allergy and clinical immunology,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
August 2020, Cancers,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
September 2008, Virology journal,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
January 2018, Anti-cancer agents in medicinal chemistry,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
August 2001, Experimental and molecular pathology,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
April 1996, Oncology (Williston Park, N.Y.),
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
January 2014, PloS one,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
June 1994, The Journal of surgical research,
A M Skoff, and R P Lisak, and B Bealmear, and J A Benjamins
June 1999, Transplant immunology,
Copied contents to your clipboard!