Epinephrine and insulin stimulate different mitogen-activated protein kinase signaling pathways in rat skeletal muscle. 1998

R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
Research Division, Joslin Diabetes Center, and Harvard Medical School, Boston, Massachusetts 02215, USA.

Little is known about the regulation of the mitogen-activated protein (MAP) kinase signaling cascades by hormonal stimulation in vivo. The extracellular signal-regulated kinase (ERK) and the c-jun kinase (JNK) are two MAP kinase signaling pathways that could play a role in the cellular response to hormones such as insulin and epinephrine. We studied the effects of insulin (20 U/rat) and epinephrine (25 microg/100 g body wt) injected in vivo on ERK and JNK signaling in skeletal muscle from Sprague-Dawley rats. Insulin significantly increased ERK phosphorylation and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2 (RSK2), by 1.4-fold, but it had no effect on JNK activity. In contrast, epinephrine had no effect on ERK phosphorylation or RSK2 activity, but it increased JNK activity by twofold, an effect that was inhibited by the presence of combined alpha and beta blockade. Furthermore, the phosphorylation of both p46 and p55 isoforms of JNK, measured by phosphospecific antibody, was increased severalfold. The activity and phosphorylation of MAP kinase kinase (MKK)-4, an upstream regulator of JNK, was unchanged by epinephrine. Incubation of isolated soleus muscles in vitro with epinephrine (10(-5) mol/l) also increased JNK activity by twofold. These data are the first to demonstrate that epinephrine can increase JNK activity. Insulin and epinephrine have different effects on MAP kinase signaling pathways in skeletal muscle, which may be one of the underlying molecular mechanisms through which these hormones regulate opposing metabolic functions.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D048031 JNK Mitogen-Activated Protein Kinases A subgroup of mitogen-activated protein kinases that activate TRANSCRIPTION FACTOR AP-1 via the phosphorylation of C-JUN PROTEINS. They are components of intracellular signaling pathways that regulate CELL PROLIFERATION; APOPTOSIS; and CELL DIFFERENTIATION. jun N-Terminal Kinase,c-jun Amino-Terminal Kinase,c-jun N-Terminal Kinase,jun-NH2-Terminal Kinase,jun-NH2-Terminal Kinases,Amino-Terminal Kinase, c-jun,JNK Mitogen Activated Protein Kinases,Kinase, jun N-Terminal,N-Terminal Kinase, c-jun,N-Terminal Kinase, jun,c jun Amino Terminal Kinase,c jun N Terminal Kinase,jun N Terminal Kinase,jun NH2 Terminal Kinase,jun NH2 Terminal Kinases
D048670 MAP Kinase Kinase 4 A mitogen-activated protein kinase kinase with specificity for JNK MITOGEN-ACTIVATED PROTEIN KINASES; P38 MITOGEN-ACTIVATED PROTEIN KINASES and the RETINOID X RECEPTORS. It takes part in a SIGNAL TRANSDUCTION pathway that is activated in response to cellular stress. JN Kinase Kinase,JNK Kinase,JNK-Activating Protein Kinase,JNKK1 Protein Kinase,Jun Amino-Terminal Kinase Kinase,MEK4 Protein Kinase,Mitogen-Activated Protein Kinase Kinase 4,SAP Kinase Kinase 1,SAP Kinase-Extracellular Signal-Regulated Kinase Kinase 1,SAPK-ERK Kinase 1,SEK1 Protein Kinase,Stress-Activated Protein Kinase Kinase 1,JNK Activating Protein Kinase,Jun Amino Terminal Kinase Kinase,Kinase, JNKK1 Protein,Mitogen Activated Protein Kinase Kinase 4,Protein Kinase, JNK-Activating,Protein Kinase, JNKK1,Protein Kinase, MEK4,Protein Kinase, SEK1,SAP Kinase Extracellular Signal Regulated Kinase Kinase 1,SAPK ERK Kinase 1,Stress Activated Protein Kinase Kinase 1

Related Publications

R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
August 1996, The American journal of physiology,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
October 2007, Biochemical and biophysical research communications,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
March 2014, Journal of molecular signaling,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
January 2005, Methods in molecular medicine,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
January 2003, Frontiers in bioscience : a journal and virtual library,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
October 1999, The American journal of physiology,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
August 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
December 1993, Biochemical and biophysical research communications,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
April 2010, Journal of cellular physiology,
R Napoli, and L Gibson, and M F Hirshman, and M D Boppart, and S D Dufresne, and E S Horton, and L J Goodyear
October 1993, Experimental hematology,
Copied contents to your clipboard!