The oligomycin sensitivity conferring protein of rat liver mitochondrial ATP synthase: arginine 94 is important for the binding of OSCP to F1. 1998

T R Golden, and P L Pedersen
Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2185, USA.

The oligomycin sensitivity conferring protein (OSCP) is an essential subunit of the mitochondrial ATP synthase (F0F1) long regarded as being directly involved in the energetic coupling of proton transport to ATP synthesis. To gain insight into the function of OSCP, mutations were made in a highly conserved central region of the subunit, and the recombinant proteins were studied using several biochemical assays. Rat liver OSCP was expressed to high levels in Escherichia coli, solubilized from inclusion bodies, renatured, and purified to homogeneity. The recombinant protein was able to reconstitute oligomycin-sensitive ATPase activity to inner membrane vesicles depleted of F1 and OSCP, and bound to F1 with a stoichiometry of 1:1. A novel fluorescence anisotropy assay was developed to study the affinity of binding of F1 to OSCP, providing a Kd value of 51 +/- 11 nM. Two highly conserved, charged residues (E91 and R94) which lie within the central region of OSCP were mutated, and the recombinant proteins (E91Q, R94Q, and R94A) were purified to homogeneity and judged by CD spectroscopy to have structures similar to that of the wild-type protein. Both R94 mutants demonstrated little or no binding to F1, while the E91Q bound in a manner identical to that of wild-type OSCP. Significantly, all three mutant proteins were able to reconstitute F1 with membranes and to confer oligomycin sensitivity to the same extent as wild-type OSCP. These results demonstrate that a single tight binding site exists on isolated rat liver F1 for OSCP, and implicate arginine 94 as playing a critical role in this site. In addition, these results indicate that this tight binding site is not required for conferral of oligomycin sensitivity to the reconstituted F0F1 complex.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002479 Inclusion Bodies A generic term for any circumscribed mass of foreign (e.g., lead or viruses) or metabolically inactive materials (e.g., ceroid or MALLORY BODIES), within the cytoplasm or nucleus of a cell. Inclusion bodies are in cells infected with certain filtrable viruses, observed especially in nerve, epithelial, or endothelial cells. (Stedman, 25th ed) Cellular Inclusions,Cytoplasmic Inclusions,Bodies, Inclusion,Body, Inclusion,Cellular Inclusion,Cytoplasmic Inclusion,Inclusion Body,Inclusion, Cellular,Inclusion, Cytoplasmic,Inclusions, Cellular,Inclusions, Cytoplasmic

Related Publications

T R Golden, and P L Pedersen
October 1989, The Biochemical journal,
T R Golden, and P L Pedersen
December 1984, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!