Effects of hyperthermic stress on myocardial function during experimental coronary ischemia. 1976

A J Liedtke, and H C Hughes

We evaluated hyperthermic influences on ischemic hearts by comparing two groups of intact working swine hearts (n = 20) made globally ischemic. Heart muscle temperature was selectively increased from 37.5 +/- 0.3 degrees C to 39.7 +/- 0.3 degrees C in one group (n = 11) by warming the coronary perfusate. Ischemia in normothermic hearts significantly (P less than 0.05) decreased mechanical function (as reflected by increases in left ventricular end-diastolic pressure [LVEDP]), myocardial oxygen consumption (MVO2), glucose uptake, glycolytic flux, free fatty acid (FFA) uptake and oxidation, and tissue stores of high energy phosphates. Hearing in ischemic hearts further depressed mechanical function at similar reductions in coronary flow and MVO2. Glucose uptake was terminally increased over normothermic values (329 vs. 221 mumol/hr per g) as was glycolytic metabolism, FFA uptake (26 vs. 17 mumol/hr per g), and FFA oxidation (21 vs. 11 mumol/hr per g). However, these changes were not translated into increased energy stores of tissue creatine phosphate and ATP. Thus, in ischemic hearts, hyperthermia neither prevented the development of mechanical deterioration nor improved oxidative phosphorylation despite increases in metabolic substrate utilization. These data suggest that in experimental global ischemia heat is an added energy drain in already burdened myocardium.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females
D005334 Fever An abnormal elevation of body temperature, usually as a result of a pathologic process. Pyrexia,Fevers,Pyrexias

Related Publications

A J Liedtke, and H C Hughes
December 1981, American heart journal,
A J Liedtke, and H C Hughes
January 1989, Cardiovascular drugs and therapy,
A J Liedtke, and H C Hughes
January 1969, Surgical forum,
A J Liedtke, and H C Hughes
July 1994, Nihon rinsho. Japanese journal of clinical medicine,
A J Liedtke, and H C Hughes
May 1986, Zhong xi yi jie he za zhi = Chinese journal of modern developments in traditional medicine,
A J Liedtke, and H C Hughes
October 1972, The American journal of cardiology,
Copied contents to your clipboard!