Purinergic regulation of acid/base transport in human and rat biliary epithelial cell lines. 1998

A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
Institute of Internal Medicine and Azienda Ospedaliera di Padova, University of Padova, Padova, Italy.

Biliary epithelial cells (cholangiocytes) are responsible for rapid regulation of bile volume and alkalinity. Secretin and other hormones raising intracellular cyclic adenosine monophosphate (cAMP) concentrations promote biliary HCO3 secretion by stimulating apical Cl- channels and Cl-/HCO3- exchange (AE2). Cholangiocyte ion transport may also be stimulated by locally acting mediators; for example, adenosine 5'-triphosphate (ATP), a secretagogue that can be released into the bile by hepatocytes and cholangiocytes, activates Cl- conductances and Na+/H+ exchange (NHE) in cholangiocyte cell lines. To further explore the role of extracellular ATP in the paracrine regulation of carrier mechanisms regulating cholangiocyte H+/HCO3- secretion, we investigated the effects of nucleotides on intracellular pH regulation (measured by microfluorimetry with 2'7'-bis(2-carboxyethyl)-5,6,carboxyfluorescein [BCECF]) in human (MZ-ChA-1) and rat (NRC-1) cholangiocyte cell lines. In MZ-ChA-1 cells, 10 mol/L ATP, uridine 5'-triphosphate (UTP), and ATPgammas significantly increased NHE activity. The pharmacological profile of agonists was consistent with that anticipated for receptors of the P2Y2 class. ATP did not increase AE2 activity, but, when given to cells pretreated with agents raising intracellular cAMP, had a synergistic stimulatory effect that was inhibited by amiloride. To assess the polarity of purinergic receptors, monolayers of NRC-1 cells were exposed to apical or basolateral nucleotides. Apical administration of purinergic agonists, but not adenosine, increased basolateral NHE activity (ATPgammaS > UTP > ATP). Basolateral administration of purinergic agonists induced a weaker activation of NHE, which was instead strongly stimulated by adenosine and by adenosine receptor agonists (NECA = R-PIA = S-PIA). In conclusion, this study demonstrates that, consistent with the proposed role for biliary ATP in paracrine and autocrine control of cholangiocyte ion secretion, extracellular ATP stimulates cholangiocyte basolateral NHE activity through P2Y2 receptors that are predominantly expressed at the apical cell membrane.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
March 2004, The Journal of physiology,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
November 2011, The Journal of physiology,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
March 1986, Cell biology and toxicology,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
June 1994, The American journal of physiology,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
June 1993, Gastroenterology,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
July 2011, Acta physiologica (Oxford, England),
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
October 1989, American journal of kidney diseases : the official journal of the National Kidney Foundation,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
August 1990, Kidney international,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
May 1995, Cell calcium,
A Zsembery, and C Spirlì, and A Granato, and N F LaRusso, and L Okolicsanyi, and G Crepaldi, and M Strazzabosco
July 1995, The American journal of physiology,
Copied contents to your clipboard!