Reversal of ethanol-induced testosterone suppression in peripubertal male rats by opiate blockade. 1998

M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
Department of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA.

Teenage drinking is a major problem in the United States, as well as abroad. Besides psychosocial implications, ethanol (EtOH) has detrimental effects on the reproductive system. Clinical problems associated with reduced reproductive hormones include osteoporosis, decreased muscle function, anemia, altered immune function, prostate involution, and decreased reproductive abilities. Education coupled with strategies aimed at preventing these deleterious consequences even in the face of continued EtOH intake is extremely important. We have tested the possibility that naltrexone, a drug currently used in patients to decrease alcohol craving, might also prevent the fall in the male hormone, testosterone, caused by EtOH exposure. Rats aged 35 days old (prepubertal), 45 days old (midpubertal), and 55 days old (late pubertal) were injected (intraperitoneally) with either saline, EtOH, naltrexone, or EtOH plus naltrexone. In the two older age groups, EtOH significantly suppressed testosterone, which was prevented by administration of naltrexone. In the youngest animals, there was no treatment effect presumably due to low basal levels of testosterone. EtOH similarly reduced luteinizing hormone (LH), but this suppression was not prevented by naltrexone. There was no consistent effect of any treatment on hypothalamic concentration of pro-LH releasing hormone (RH) (LHRH), LHRH, or on steady-state levels of LHRH mRNA. We conclude that, as animals progress through puberty, EtOH suppresses LH and testosterone. The testosterone decline can be prevented by opiate blockade with naltrexone, an effect primarily seen at gonadal level. Thus, naltrexone, a drug already used clinically to reduce EtOH intake, also has protective physiological effects on the endocrine system.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
February 2004, General and comparative endocrinology,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
January 2004, Alcohol (Fayetteville, N.Y.),
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
May 1990, Journal of molecular and cellular cardiology,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
January 2018, Frontiers in pharmacology,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
January 2010, PloS one,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
January 2001, Journal of andrology,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
July 2010, Stress (Amsterdam, Netherlands),
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
January 1989, Problemy endokrinologii,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
August 1986, The Journal of experimental zoology,
M A Emanuele, and N LaPaglia, and J Steiner, and K Jabamoni, and M Hansen, and L Kirsteins, and N V Emanuele
January 1995, International journal of sports medicine,
Copied contents to your clipboard!