Vasopressin processing defects in the Brattleboro rat: implications for hereditary central diabetes insipidus in humans? 1998

J K Kim, and R W Schrier
Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA.

The arginine vasopressin (AVP) precursor gene of mammals contains three exons encoding the principal domains of the polyprotein precursor, including vasopressin (exon A), neurophysin (exon B), and glycopeptide (exon C). The AVP precursor (preprohormone) is processed and transported through the endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles, and finally, mature AVP is secreted from the posterior pituitary into the circulation. The exact steps of these processes during AVP translation and posttranslation events are not yet well elucidated. Defects in peptide processing are associated with several genetic disorders, including central diabetes insipidus (CDI). In the Brattleboro rat with CDI, the mRNA and protein of AVP are present in the hypothalamus, but no circulating AVP is detectable, thus suggesting a processing defect, transport defect, or both. The mutated AVP gene precursor of Brattleboro rat has a deletion of a single base, guanine, in the neurophysin coding region that leads to a frameshift resulting in the loss of the normal stop codon. It has been reported that the mutated precursor is trapped in the ER and does not reach the Golgi apparatus. Recent studies examined AVP secretion in cultured COS cells transfected with various constructs from wild-type and mutated Brattleboro AVP gene precursors. The wild-type in vitro studies demonstrated that intact neurophysin, but not the glycoprotein coding region, is necessary for normal AVP processing and secretion. Next, the results demonstrated that the guanine defect in the neurophysin coding region and the prolonged C-terminus accounted for the processing defect in the Brattleboro rat with CDI. These defects no doubt impair the folding and configuration necessary for normal processing of the AVP gene precursor in the ER. In hereditary CDI in humans, the majority of the mutations have also been shown to occur in the neurophysin coding region. However, in contrast to the recessive defect in the Brattleboro rat, in human CDI, neurotoxicity and denigration of the magnocellular neurons have been observed, and dominant inheritance occurs. Moreover, all mutations are missense, nonsense, or deletions in human CDI rather than the shift in reading frame and preserved neurons that is observed with the Brattleboro rat. Thus, the results from studies in the Brattleboro rat may only be partially applicable to hereditary CDI in humans.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018500 Diabetes Insipidus, Nephrogenic A genetic or acquired polyuric disorder characterized by persistent hypotonic urine and HYPOKALEMIA. This condition is due to renal tubular insensitivity to VASOPRESSIN and failure to reduce urine volume. It may be the result of mutations of genes encoding VASOPRESSIN RECEPTORS or AQUAPORIN-2; KIDNEY DISEASES; adverse drug effects; or complications from PREGNANCY. ADH-Resistant Diabetes Insipidus,Acquired Nephrogenic Diabetes Insipidus,Congenital Nephrogenic Diabetes Insipidus,Diabetes Insipidus Renalis,Diabetes Insipidus, Nephrogenic, Autosomal,Diabetes Insipidus, Nephrogenic, Type 1,Diabetes Insipidus, Nephrogenic, Type I,Diabetes Insipidus, Nephrogenic, Type II,Diabetes Insipidus, Nephrogenic, X-Linked,Nephrogenic Diabetes Insipidus,Nephrogenic Diabetes Insipidus, Type I,Nephrogenic Diabetes Insipidus, Type II,Vasopressin-Resistant Diabetes Insipidus
D019556 COS Cells CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CHLOROCEBUS AETHIOPS).) COS-1 Cells,COS-7 Cells,COS 1 Cells,COS 7 Cells,COS Cell,COS-1 Cell,COS-7 Cell,Cell, COS,Cell, COS-1,Cell, COS-7,Cells, COS,Cells, COS-1,Cells, COS-7

Related Publications

J K Kim, and R W Schrier
January 1977, General pharmacology,
J K Kim, and R W Schrier
February 1965, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
J K Kim, and R W Schrier
January 1986, Acta physiologica et pharmacologica Bulgarica,
J K Kim, and R W Schrier
July 1993, Annals of the New York Academy of Sciences,
J K Kim, and R W Schrier
January 1982, Annals of the New York Academy of Sciences,
J K Kim, and R W Schrier
January 1982, Annals of the New York Academy of Sciences,
J K Kim, and R W Schrier
January 1984, Nature,
J K Kim, and R W Schrier
January 1985, Acta medica Scandinavica,
Copied contents to your clipboard!