Inhibition of Na+/H+ exchange stimulates CCK secretion in STC-1 cells. 1998

V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
Department of Medicine, Duke University Medical Center, Durham 27710; and Durham Veterans Affairs Medical Center, Durham, North Carolina 27705, USA.

It has been demonstrated that K+ channel regulation of membrane potential is critical for control of CCK secretion. Because certain K+ channels are pH sensitive, it was postulated that pH affects K+ channel activity in the CCK-secreting cell line STC-1 and may participate in regulating CCK secretion. The present study examines the role of electroneutral Na+/H+ exchange on extracellular acidification and hormone secretion. Treatment of STC-1 cells with the amiloride analog ethylisopropyl amiloride (EIPA) to inhibit Na+/H+ exchange inhibited Na+-dependent H+ efflux and increased basal CCK secretion. Substituting choline for NaCl in the extracellular medium elevated basal intracellular Ca2+ concentration and stimulated CCK release. Stimulatory effects on hormone secretion were blocked by the L-type Ca2+ channel blocker diltiazem, indicating that secretion was dependent on the influx of extracellular Ca2+. To determine whether the effects of EIPA and Na+ depletion were due to membrane depolarization, we tested graded KCl concentrations. The ability of EIPA to increase CCK secretion was inhibited by depolarization induced by 10-50 mM KCl in the bath. Maneuvers to lower intracellular pH (pHi), including reducing extracellular pH (pHo) to 7.0 or treatment with sodium butyrate, significantly increased CCK secretion. To examine whether pH directly affects membrane K+ permeability, we measured outward currents carried by K+, using whole cell patch techniques. K+ current was significantly inhibited by lowering pHo to 7.0. These effects appear to be mediated through changes in pHi, because intracellular dialysis with acidic solutions nearly eliminated current activity. These results suggest that Na+/H+ exchange and membrane potential may be functionally linked, where inhibition of Na+/H+ exchange lowers pHi and depolarizes the membrane, perhaps through inhibition of pH-sensitive K+ channels. In turn, K+ channel closure and membrane depolarization open voltage-dependent Ca2+ channels, leading to an increase in cytosolic Ca2+ and CCK release. The effects of pHi on K+ channels may serve as a potent stimulus for hormone secretion, linking cell metabolism and secretory functions.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007414 Intestinal Neoplasms Tumors or cancer of the INTESTINES. Cancer of Intestines,Intestinal Cancer,Cancer of the Intestines,Intestines Cancer,Intestines Neoplasms,Neoplasms, Intestinal,Cancer, Intestinal,Cancer, Intestines,Cancers, Intestinal,Cancers, Intestines,Intestinal Cancers,Intestinal Neoplasm,Intestines Cancers,Intestines Neoplasm,Neoplasm, Intestinal,Neoplasm, Intestines,Neoplasms, Intestines
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin

Related Publications

V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
April 2014, Nutrition research and practice,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
March 2013, Biomolecules & therapeutics,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
May 2014, Molecular nutrition & food research,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
January 2002, American journal of physiology. Gastrointestinal and liver physiology,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
March 1997, The American journal of physiology,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
January 1984, Biochemical and biophysical research communications,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
September 1996, The American journal of physiology,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
May 2007, American journal of physiology. Gastrointestinal and liver physiology,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
May 2012, Molecular nutrition & food research,
V Prpic, and J G Fitz, and Y Wang, and J R Raymond, and M N Garnovskaya, and R A Liddle
January 1990, Biochemistry international,
Copied contents to your clipboard!