Hepatocellular expression of glucose-6-phosphatase is unaltered during hepatic regeneration. 1998

W F Zakko, and C L Berg, and J L Gollan, and R M Green
Division of Gastroenterology, Brigham & Women's Hospital, Boston, Massachusetts 02115, USA.

Gluconeogenesis and glycogenolysis are essential hepatic functions required for glucose homeostasis. During the initial phase of hepatic regeneration, the immediate-early genes (IEG) are rapidly expressed, and the IEG RL-1 encodes for glucose-6-phosphatase (G-6-Pase). G-6-Pase is a microsomal enzyme essential for gluconeogenesis and glycogenolysis. This study employs a partial-hepatectomy model to examine the expression and activity of G-6-Pase. After partial hepatectomy, rat hepatic G-6-Pase gene expression is transcriptionally regulated, and mRNA levels are increased approximately 30-fold. However, in contrast to this rapid gene induction, microsomal enzyme activity is unchanged after partial hepatectomy. Western blotting demonstrates that microsomal G-6-Pase protein expression is also unchanged after partial hepatectomy, and similar results are also noted in whole liver homogenate. Thus, despite marked induction in gene expression of the IEG G-6-Pase after partial hepatectomy, protein expression and enzyme activity remain unchanged. These data indicate that, although this hepatocyte IEG is transcriptionally regulated, the physiologically important level of regulation is posttranscriptional. This highlights the importance of correlating gene expression of IEG with protein expression and physiological function.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008115 Liver Regeneration Repair or renewal of hepatic tissue. Liver Regenerations,Regeneration, Liver,Regenerations, Liver
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005952 Glucose-6-Phosphatase An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9. Glucosephosphatase,Glucose 6-Phosphatase,Glucose-6-Phosphate Phosphohydrolase,Glucose 6 Phosphatase
D006498 Hepatectomy Excision of all or part of the liver. (Dorland, 28th ed) Hepatectomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

W F Zakko, and C L Berg, and J L Gollan, and R M Green
March 1979, Bollettino della Societa italiana di biologia sperimentale,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
August 1995, Biochemical Society transactions,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
December 1963, Arquivos brasileiros de endocrinologia e metabologia,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
January 1997, Diabetes,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
August 2021, Journal of applied toxicology : JAT,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
February 1974, FEBS letters,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
June 1999, Molecular and cellular biochemistry,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
December 1996, The American journal of physiology,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
January 2000, Archives of biochemistry and biophysics,
W F Zakko, and C L Berg, and J L Gollan, and R M Green
June 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!