Activities of mutant Sar1 proteins in guanine nucleotide binding, GTP hydrolysis, and cell-free transport from the endoplasmic reticulum to the Golgi apparatus. 1998

Y Saito, and K Kimura, and T Oka, and A Nakano
Molecular Membrane Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.

Sar1p belongs to a unique subfamily of the small GTPase superfamily and is essential for the formation of vesicles that transport proteins from the endoplasmic reticulum to the Golgi apparatus. We have obtained mutants of the yeast SAR1 gene, which show several different phenotypes in cell growth and protein transport [Nakano, A. , Otsuka, H., Yamagishi, M., Yamamoto, E., Kimura, K., Nishikawa, S., and Oka, T. (1994) J. Biochem. 116, 243-247; Yamanushi, T., Hirata, A., Oka, T., and Nakano, A. (1996) ibid. 120, 452-458]. In this study, we have purified five mutant Sar1 proteins using an Escherichia coli expression system and characterized their biochemical properties in detail. Three of them prefer GDP binding to GTP binding and are thus regarded as GDP-form mutants, and one is insensitive to the GTPase-activating protein and is almost fixed in the GTP-bound state. The GDP mutants are defective in vesicle formation in vitro, whereas the GTP mutant can drive vesicle formation but not the overall transport to the Golgi. These mutants will be useful for further understanding of the regulation of the GTPase cycle of Sar1p.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine

Related Publications

Y Saito, and K Kimura, and T Oka, and A Nakano
December 1989, The Journal of cell biology,
Y Saito, and K Kimura, and T Oka, and A Nakano
August 2000, The Plant journal : for cell and molecular biology,
Y Saito, and K Kimura, and T Oka, and A Nakano
October 1998, Journal of cell science,
Y Saito, and K Kimura, and T Oka, and A Nakano
October 1998, The Journal of biological chemistry,
Y Saito, and K Kimura, and T Oka, and A Nakano
August 1991, The Journal of cell biology,
Y Saito, and K Kimura, and T Oka, and A Nakano
June 2004, Cellular and molecular life sciences : CMLS,
Y Saito, and K Kimura, and T Oka, and A Nakano
August 1998, The Biochemical journal,
Y Saito, and K Kimura, and T Oka, and A Nakano
July 1984, Cell structure and function,
Y Saito, and K Kimura, and T Oka, and A Nakano
August 1998, Current opinion in cell biology,
Y Saito, and K Kimura, and T Oka, and A Nakano
March 1992, The Journal of cell biology,
Copied contents to your clipboard!