Adrenal steroid regulation of central angiotensin II receptor subtypes and oxytocin receptors in rat brain. 1998

S G Shelat, and S J Fluharty, and L M Flanagan-Cato
Institute of Neurological Sciences, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA.

The neuropeptides angiotensin II (AngII) and oxytocin (OT) play important but opposing roles in the regulation of sodium appetite in the rat, AngII as a stimulatory peptide and OT as an inhibitory peptide. Adrenal steroids increase the density of AngII receptors in brain following in vivo administration, although the neuroanatomical and subtype specificity have not been thoroughly examined. Furthermore, previous studies demonstrate that adrenalectomy (ADX) leads to a reduction in OT receptors, although regions associated with sodium appetite remain to be examined. In the present study, quantitative receptor autoradiography was used to locate regions where perturbations in circulating adrenal steroids affect the density of oxytocin receptors and the angiotensin receptor subtypes AT1 and AT2. The results show that ADX results in a small, but significant decrease in AT1 expression in the paraventricular nucleus of the hypothalamus, subfornical organ, and the area postrema. That this effect is reversed by either aldosterone or low-dose corticosterone replacement suggests that occupancy of the mineralocorticoid receptor is responsible for the steroid effect. No changes were observed in AT2 or OT receptors in nuclei associated with sodium appetite, indicating that perturbations in adrenal steroids did not affect these receptors in brain regions implicated in the control of salt appetite.

UI MeSH Term Description Entries
D008297 Male Males
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D000450 Aldosterone A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. Aldosterone, (+-)-Isomer,Aldosterone, (11 beta,17 alpha)-Isomer
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001069 Appetite Regulation Physiologic mechanisms which regulate or control the appetite and food intake. Food Intake Regulation,Intake Regulation, Food,Regulation, Appetite,Regulation, Food Intake,Appetite Regulations,Food Intake Regulations,Intake Regulations, Food,Regulations, Appetite,Regulations, Food Intake
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

S G Shelat, and S J Fluharty, and L M Flanagan-Cato
February 1991, Clinical and experimental pharmacology & physiology,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
September 1990, European journal of pharmacology,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
January 1995, Brain research bulletin,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
January 1991, Cardiology,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
October 1991, Neuroscience letters,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
December 1993, Brain research,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
January 1991, Endocrinology,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
May 1992, Neuroendocrinology,
S G Shelat, and S J Fluharty, and L M Flanagan-Cato
July 1998, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!