Effects of ethanol on rat somatosensory cortical neurons. 1998

F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
Department of Neurobiology and Anatomy, Allegheny University of the Health Sciences, EPPI Bldg., 3200 Henry Avenue, Philadelphia, PA 19129, USA.

In this study, we characterized the local effects of ethanol (EtOH) on postsynaptic potentials (PSPs) and membrane properties of layer II-III (L2-3) and layer V (L5) somatosensory cortical neurons. Intracellular recordings were done using the in vitro slice preparation of rat somatosensory cortex. Our results show that EtOH exerts local effects on cortical cell membrane at physiologically relevant concentrations. A predominant effect of EtOH was to reduce excitability of L2-3 and L5 neurons by increasing the rheobase, decreasing input resistance and repetitive firing, reducing PSPs amplitude and the probability of evoking action potentials. Early (6 ms) and late (18 ms) PSP components were affected differentially by EtOH, the late components being more suppressed. Overall, EtOH-mediated suppression of PSPs was stronger in L5 neurons. Cortical neurons were divided into three subtypes: regular spiking adapting (RS-A), regular spiking non-adapting (RS-NA) and bursting (D-IB) neurons. PSPs evoked in RS-A neurons were more sensitive to EtOH suppressant effects. EtOH effects on input resistance were distributed differentially among the three groups of neurons. These results support the notion that EtOH disrupts higher processing of somatosensory information via a differential alteration of cortical neuron's membrane properties and synaptic transmission.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002492 Central Nervous System Depressants A very loosely defined group of drugs that tend to reduce the activity of the central nervous system. The major groups included here are ethyl alcohol, anesthetics, hypnotics and sedatives, narcotics, and tranquilizing agents (antipsychotics and antianxiety agents). CNS Depressants,Depressants, CNS
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary

Related Publications

F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
May 2010, Cerebral cortex (New York, N.Y. : 1991),
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
January 1990, Neuroscience,
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
February 2002, Synapse (New York, N.Y.),
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
August 1997, Brain research,
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
September 1967, Science (New York, N.Y.),
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
February 1989, Alcoholism, clinical and experimental research,
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
January 2007, Alcoholism, clinical and experimental research,
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
December 2008, Neuroscience,
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
August 1999, Neurochemistry international,
F M Sessler, and F C Hsu, and T N Felder, and J Zhai, and R C Lin, and S J Wieland, and A E Kosobud
January 1992, Alcohol (Fayetteville, N.Y.),
Copied contents to your clipboard!