Cell migration and MMP-9 secretion are increased by epidermal growth factor in HaCaT-ras transfected cells. 1998

S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
INSERM U346, Pav. R, Hôpital E. Herriot, Lyon, France.

Mutated RAS oncoproteins and epidermal growth factor (EGF) are thought to contribute to the proliferative, invasive and metastatic properties of transformed cells. In the present study, we investigated the role of EGF in two H-ras transfected clones and compared it to that in the parental cell line, HaCaT and primary cultured keratinocytes. Our findings show that the motility on type I collagen, measured by the migration index, was similar for both the HaCaT cell line and normal human keratinocytes, whereas it was higher for the HaCaT-ras clones. These results suggest an involvement of the ras oncogene in the stimulation of cell migration. EGF in cell pretreatment or during the migration assay also caused an increase in migration of all the cells, but preserved the difference between HaCaT and HaCaT-ras. However, no significant difference in EGF-R expression was detected between normal cultured keratinocytes, HaCaT and HaCaT-ras cell lines with or without EGF pretreatment. Moreover, when the cells were stimulated with EGF, the MMP-9 activity was greatly increased in a dose-dependent manner in all the cells, and EGF stimulation particularly highlights the increased amount of MMP-9 in HaCaT-ras cells compared to HaCaT cells. In conclusion, EGF is able to enhance motility and to up-regulate MMP-9 activity in all cells, but with a higher impact in HaCaT-ras cells without an overexpression of EGF-R. As EGF acts in synergy with the H-ras mutation, they could be implicated in the local invasion by the HaCaT-ras clones.

UI MeSH Term Description Entries
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D017364 Collagenases Enzymes that catalyze the degradation of collagen by acting on the peptide bonds. Collagen Peptidase,Collagen-Degrading Enzyme,Collagenase,Collagen Degrading Enzyme,Peptidase, Collagen
D020780 Matrix Metalloproteinase 9 An endopeptidase that is structurally similar to MATRIX METALLOPROTEINASE 2. It degrades GELATIN types I and V; COLLAGEN TYPE IV; and COLLAGEN TYPE V. Gelatinase B,92-kDa Gelatinase,92-kDa Type IV Collagenase,MMP-9 Metalloproteinase,MMP9 Metalloproteinase,Matrix Metalloproteinase-9,92 kDa Gelatinase,92 kDa Type IV Collagenase,MMP 9 Metalloproteinase,Metalloproteinase 9, Matrix,Metalloproteinase, MMP-9,Metalloproteinase, MMP9

Related Publications

S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
August 2007, FEBS letters,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
March 1986, Molecular and cellular biology,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
May 1989, Cancer research,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
December 2013, Biochemical and biophysical research communications,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
March 1997, International journal of cancer,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
January 2017, Molecular vision,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
August 1991, Cancer research,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
February 2014, Physiological reports,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
July 2019, Molecular medicine reports,
S Charvat, and M C Chignol, and C Souchier, and C Le Griel, and D Schmitt, and M Serres
January 2003, Clinical & experimental metastasis,
Copied contents to your clipboard!