Expression, purification, and characterization of recombinant ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit nepsilon-methyltransferase. 1998

Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
Plant Physiology/Biochemistry/Molecular Biology Program, University of Kentucky, Lexington, Kentucky, 40546, USA.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) Nepsilon-methyltransferase (Rubisco LSMT, EC 2.1.1.127) catalyzes methylation of the LS of Rubisco. A pea (Pisum sativum L. cv Laxton's Progress No. 9) Rubisco LSMT cDNA was expressed in Escherichia coli, but most of the expressed protein was found in the insoluble fraction as an inclusion body. Expression at lower temperatures increased the level of soluble Rubisco LSMT and the associated enzymatic activity. However, the soluble form of Rubisco LSMT occurred as two molecular mass forms with the lower molecular mass suggestive of N-terminal processing at Ser-37. Deletion of 108 nucleotides from the 5' end encoding the N-terminal 36 amino acids of Rubisco LSMT resulted in a 10-fold increase in solubility and activity. Further addition of a 3' nucleotide sequence coding for a hexahistidyl carboxy-terminal peptide enabled purification of the N-terminally truncated Rubisco LSMT to homogeneity. Five milligrams of pure recombinant Rubisco LSMT was obtained from a 1-liter E. coli cell culture. The apparent kinetic constants for recombinant Rubisco LSMT for spinach Rubisco and AdoMet were only slightly different from the constants determined using affinity-purified native Rubisco LSMT from pea chloroplasts. However, there was a 6- to 7-fold reduction in the kcat for Rubisco LSMT, which was apparently a consequence of catalytic inactivation due to exposure to NiSO4 during purification. The availability of larger quantities of purified Rubisco LSMT should enable studies of the structure-function relationships in Rubisco LSMT and moreover its interaction with Rubisco.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011495 Histone-Lysine N-Methyltransferase An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. Protein Lysine Methyltransferase,Protein Methylase III,Protein Methyltransferase III,Histone-Lysine Methyltransferase,Histone Lysine Methyltransferase,Histone Lysine N Methyltransferase,Methyltransferase, Histone-Lysine,Methyltransferase, Protein Lysine,N-Methyltransferase, Histone-Lysine
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
November 1991, Plant physiology,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
August 1995, Protein expression and purification,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
January 1995, Plant molecular biology,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
November 1996, Plant molecular biology,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
January 1983, Annual review of biochemistry,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
January 1985, Planta,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
July 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
February 1986, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
Q Zheng, and E J Simel, and P E Klein, and M T Royer, and R L Houtz
June 2003, Archives of biochemistry and biophysics,
Copied contents to your clipboard!