The effects of standard and low molecular weight heparin on bone nodule formation in vitro. 1998

M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
Department of Surgery, McMaster University and the Hamilton Civic Hospitals Research Centre, Ontario, Canada.

Previously, we demonstrated in a rat model of heparin-induced osteoporosis that low molecular weight heparin (LMWH) produces less bone loss than unfractionated heparin, and that only heparin increases osteoclast number and activity. In contrast, both heparin and LMWH were found to decrease osteoblast function to a similar extent, possibly because at the doses tested both agents produced maximal inhibition. To examine the relative effects of heparin and LMWH on osteoblast function more closely we used an in vitro bone nodule assay, together with measurements of alkaline phosphatase (ALP) activity. Both agents inhibited bone nodule formation and ALP activity in a concentration-dependent manner, but 6 to 8-fold higher concentrations of LMWH were required to achieve equivalent effects. The effect of heparin on osteoblast function was both chain-length and negative charge-dependent because the ability of defined heparin fragments to inhibit nodule formation correlated with their molecular weight (r = 0.98), and N-desulfated heparin was less inhibitory than heparin. In contrast, the effect of heparin on osteoblast function was pentasaccharide-independent because heparin with low affinity for antithrombin had similar activity to heparin with high antithrombin activity. These findings help to explain mounting clinical evidence that the risk of osteoporosis is lower with LMWH than with heparin.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006495 Heparin, Low-Molecular-Weight Heparin fractions with a molecular weight usually between 4000 and 6000 kD. These low-molecular-weight fractions are effective antithrombotic agents. Their administration reduces the risk of hemorrhage, they have a longer half-life, and their platelet interactions are reduced in comparison to unfractionated heparin. They also provide an effective prophylaxis against postoperative major pulmonary embolism. LMWH,Low-Molecular-Weight Heparin,Low Molecular Weight Heparin,Heparin, Low Molecular Weight
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 2005, Pharmacological reports : PR,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 1999, Wiener medizinische Wochenschrift (1946),
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 2008, Thrombosis research,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
October 1988, Thrombosis and haemostasis,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 1992, Acta haematologica Polonica,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
October 2004, Thrombosis and haemostasis,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 1990, ASAIO transactions,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
December 1994, Minerva urologica e nefrologica = The Italian journal of urology and nephrology,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 1989, Haemostasis,
M Bhandari, and J Hirsh, and J I Weitz, and E Young, and T J Venner, and S G Shaughnessy
January 1990, Langenbecks Archiv fur Chirurgie. Supplement II, Verhandlungen der Deutschen Gesellschaft fur Chirurgie. Deutsche Gesellschaft fur Chirurgie. Kongress,
Copied contents to your clipboard!