Immune response to Philadelphia chromosome-positive acute lymphoblastic leukemia induced by expression of CD80, interleukin 2, and granulocyte-macrophage colony-stimulating factor. 1998

R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital Los Angeles, CA 90027, USA.

We examined the potential of generating an immune response against Philadelphia chromosome-positive acute lymphoblastic leukemia. The immunostimulatory molecules chosen for this study were the cytokines IL-2 and GM-CSF and the costimulatory ligand CD80 (B7.1). We used a murine model based on a BALB/c pre-B cell line, BM185wt, in which leukemia is induced by the p185 BCR-ABL oncogenic product, which reproduces Philadelphia chromosome-positive ALL. BM185wt cells were transduced with retroviral vectors and the transduced clones expressing mIL-2, mGM-CSF, or mCD80 were used for challenge. Expression of the immunomodulators by BM185 cells was correlated with delay in leukemia development in immunocompetent mice, but not in immunodeficient mice, indicating an immune response against the modified leukemia cells. Expression of CD80 caused leukemia rejection in 50% of the cohort, which was associated with the CD4+ and CD8+ T cell-dependent development of anti-leukemia cytotoxic T lymphocytes. Furthermore, mice surviving the BM185/CD80 challenge or preimmunized with irradiated BM185/CD80 cells developed an immune response against subsequent challenge with the parental leukemia. These studies provide evidence that immunotherapeutic approaches can be developed for the treatment of ALL.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010677 Philadelphia Chromosome An aberrant form of human CHROMOSOME 22 characterized by translocation of the distal end of chromosome 9 from 9q34, to the long arm of chromosome 22 at 22q11. It is present in the bone marrow cells of 80 to 90 per cent of patients with chronic myelocytic leukemia (LEUKEMIA, MYELOGENOUS, CHRONIC, BCR-ABL POSITIVE). Ph1 Chromosome,Ph 1 Chromosome,1 Chromosomes, Ph,Chromosome, Ph 1,Chromosome, Ph1,Chromosome, Philadelphia,Chromosomes, Ph 1,Chromosomes, Ph1,Ph 1 Chromosomes,Ph1 Chromosomes
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003601 Cytotoxicity Tests, Immunologic The demonstration of the cytotoxic effect on a target cell of a lymphocyte, a mediator released by a sensitized lymphocyte, an antibody, or complement. AHG-CDC Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Tests,Microcytotoxicity Tests,Anti Human Globulin Complement Dependent Cytotoxicity Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunologic,Cytotoxicity Tests, Anti-Human Globulin Complement-Dependent,Cytotoxicity Tests, Immunological,Immunologic Cytotoxicity Test,Immunologic Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin-Augmented,Lymphocytotoxicity Tests, Antiglobulin-Augmented,Microcytotoxicity Test,AHG CDC Tests,AHG-CDC Test,Anti Human Globulin Complement Dependent Cytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunological,Cytotoxicity Tests, Anti Human Globulin Complement Dependent,Immunological Cytotoxicity Test,Immunological Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin Augmented,Lymphocytotoxicity Tests, Antiglobulin Augmented
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
December 1998, Leukemia research,
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
September 2018, Hematology (Amsterdam, Netherlands),
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
July 1992, The New England journal of medicine,
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
November 1990, International journal of cancer,
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
January 1991, Blood,
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
August 1992, Leukemia,
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
July 1995, Stem cells (Dayton, Ohio),
R Stripecke, and D C Skelton, and T Gruber, and D Afar, and P K Pattengale, and O N Witte, and D B Kohn
November 1994, American journal of respiratory and critical care medicine,
Copied contents to your clipboard!