The effects of 17beta-estradiol on ischemia-induced neuronal damage in the gerbil hippocampus. 1998

J Chen, and N Adachi, and K Liu, and T Arai
Department of Anesthesiology and Resuscitology, Ehime University School of Medicine, Shitsukawa, Japan.

The effects of 17beta-estradiol, a potent estrogen, on ischemia-induced neuronal damage, membrane depolarization and changes in intracellular Ca2+ concentration were studied in gerbil hippocampi. The histological outcome evaluated seven days after 3 min of transient forebrain ischemia in hippocampal CA1 pyramidal cells was improved by high doses of 17beta-estradiol (30 microg, i.c.v. and 4 mg/kg, i.p.), whereas low doses of 17beta-estradiol (3 and 10 microg, i.c.v.) showed no protective effect. Administration of 17beta-estradiol did not affect the changes in the direct current potential shift in ischemia in the hippocampal CA1 area at any dosage. A hypoxia-induced intracellular Ca2+ increase was evaluated by in vitro microfluorometry in gerbil hippocampal slices. Pretreatment of 17beta-estradiol (4 mg/kg, injected i.p. 1 h before decapitation) suppressed the increase in the intracellular concentration of Ca2+ due to the in vitro hypoxia, affecting both the onset of the increase and the extent. The in vitro hypoxia in the Ca2+-free condition induced an elevation of the intracellular concentration of Ca2+, although the increase was gradual. Pretreatment of 17beta-estradiol (4 mg/kg, i.p.) also inhibited this elevation. These findings imply that high doses of 17beta-estradiol protect the neurons from ischemia by inhibiting the release of Ca2+ from the intracellular Ca2+ stores, as well as by inhibiting the influx of Ca2+ from the extracellular space.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001925 Brain Damage, Chronic A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions. Encephalopathy, Chronic,Chronic Encephalopathy,Chronic Brain Damage
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Chen, and N Adachi, and K Liu, and T Arai
September 2011, The International journal of neuroscience,
J Chen, and N Adachi, and K Liu, and T Arai
September 2006, European journal of pharmacology,
J Chen, and N Adachi, and K Liu, and T Arai
December 1986, No to shinkei = Brain and nerve,
J Chen, and N Adachi, and K Liu, and T Arai
January 1992, Life sciences,
J Chen, and N Adachi, and K Liu, and T Arai
May 1982, Brain research,
J Chen, and N Adachi, and K Liu, and T Arai
January 2019, Laboratory animal research,
J Chen, and N Adachi, and K Liu, and T Arai
October 1993, Molecular and chemical neuropathology,
J Chen, and N Adachi, and K Liu, and T Arai
September 1994, No to shinkei = Brain and nerve,
Copied contents to your clipboard!