Subtype-specific stimulation of [35S]GTPgammaS binding by recombinant alpha2-adrenoceptors. 1998

J M Peltonen, and M Pihlavisto, and M Scheinin
Department of Pharmacology and Clinical Pharmacology, University of Turku, Finland.

We measured agonist-stimulated binding of the stable GTP-analog guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) as a functional assay to monitor G-protein activation by recombinant human alpha2-adrenoceptor subtypes alpha2A, alpha2B and alpha2C. (-)-Noradrenaline was a full agonist in all receptors. Dexmedetomidine, UK14,304, clonidine and oxymetazoline showed subtype-selectivity in efficacy. Dexmedetomidine was a full agonist at alpha2B and a partial agonist at alpha2A; UK14,304 was a full agonist at alpha2A and a partial agonist at alpha2B. Clonidine and oxymetazoline were weak partial agonists at the alpha2B-subtype, but appeared inactive at alpha2A and alpha2C. The [35S]GTPgammaS binding assay provides functional information on pertussis toxin-sensitive G-protein activation, complementing radioligand binding assays and conventional second messenger assays.

UI MeSH Term Description Entries
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D058647 Adrenergic alpha-2 Receptor Agonists Compounds that bind to and activate ADRENERGIC ALPHA-2 RECEPTORS. Adrenergic alpha-2 Agonists,Adrenergic alpha-2 Receptor Agonist,Adrenergic alpha2-Agonists,Adrenergic alpha 2 Agonists,Adrenergic alpha 2 Receptor Agonist,Adrenergic alpha 2 Receptor Agonists,Adrenergic alpha2 Agonists,Agonists, Adrenergic alpha-2,alpha-2 Agonists, Adrenergic,alpha2-Agonists, Adrenergic
D018341 Receptors, Adrenergic, alpha-2 A subclass of alpha-adrenergic receptors found on both presynaptic and postsynaptic membranes where they signal through Gi-Go G-PROTEINS. While postsynaptic alpha-2 receptors play a traditional role in mediating the effects of ADRENERGIC AGONISTS, the subset of alpha-2 receptors found on presynaptic membranes signal the feedback inhibition of NEUROTRANSMITTER release. Adrenergic alpha-2 Receptors,Receptors, alpha-2 Adrenergic,alpha-2 Adrenergic Receptors,Adrenergic Receptor alpha(2C),Adrenergic Receptor alpha(2d),Adrenergic Receptor alpha-2C,Adrenergic Receptor alpha-2b,Adrenergic Receptor, alpha-2,Adrenergic alpha-2A Receptors,Adrenergic alpha-2B Receptors,Adrenergic alpha-2C Receptors,Adrenergic alpha-2D Receptors,Receptor, Adrenergic, alpha-2,Receptor, Adrenergic, alpha-2A,Receptor, Adrenergic, alpha-2B,Receptor, Adrenergic, alpha-2C,Receptor, Adrenergic, alpha-2D,Receptors, Adrenergic, alpha-2A,Receptors, Adrenergic, alpha-2B,Receptors, Adrenergic, alpha-2D,alpha 2 Adrenergic Receptors,alpha-2A Adrenergic Receptor,alpha-2B Adrenergic Receptor,alpha-2C Adrenergic Receptor,alpha-2D Adrenergic Receptor,Adrenergic Receptor alpha 2C,Adrenergic Receptor alpha 2b,Adrenergic Receptor, alpha 2,Adrenergic Receptor, alpha-2A,Adrenergic Receptor, alpha-2B,Adrenergic Receptor, alpha-2C,Adrenergic Receptor, alpha-2D,Adrenergic Receptors, alpha-2,Adrenergic alpha 2 Receptors,Adrenergic alpha 2A Receptors,Adrenergic alpha 2B Receptors,Adrenergic alpha 2C Receptors,Adrenergic alpha 2D Receptors,Receptor alpha-2C, Adrenergic,Receptor alpha-2b, Adrenergic,Receptor, alpha-2 Adrenergic,Receptor, alpha-2A Adrenergic,Receptor, alpha-2B Adrenergic,Receptor, alpha-2C Adrenergic,Receptor, alpha-2D Adrenergic,Receptors, Adrenergic alpha-2,Receptors, Adrenergic alpha-2A,Receptors, Adrenergic alpha-2B,Receptors, Adrenergic alpha-2C,Receptors, Adrenergic alpha-2D,Receptors, alpha 2 Adrenergic,alpha 2A Adrenergic Receptor,alpha 2B Adrenergic Receptor,alpha 2C Adrenergic Receptor,alpha 2D Adrenergic Receptor,alpha-2 Adrenergic Receptor,alpha-2 Receptors, Adrenergic,alpha-2A Receptors, Adrenergic,alpha-2B Receptors, Adrenergic,alpha-2C Receptors, Adrenergic,alpha-2C, Adrenergic Receptor,alpha-2D Receptors, Adrenergic,alpha-2b, Adrenergic Receptor

Related Publications

J M Peltonen, and M Pihlavisto, and M Scheinin
April 1998, Biochemical pharmacology,
J M Peltonen, and M Pihlavisto, and M Scheinin
November 1998, Biochemical pharmacology,
J M Peltonen, and M Pihlavisto, and M Scheinin
January 1998, Neuroreport,
J M Peltonen, and M Pihlavisto, and M Scheinin
November 1998, Biochimica et biophysica acta,
J M Peltonen, and M Pihlavisto, and M Scheinin
October 2002, Cellular signalling,
J M Peltonen, and M Pihlavisto, and M Scheinin
January 2004, Methods in molecular biology (Clifton, N.J.),
J M Peltonen, and M Pihlavisto, and M Scheinin
January 2000, Neuropharmacology,
Copied contents to your clipboard!