Increased GLUT-4 translocation mediates enhanced insulin sensitivity of muscle glucose transport after exercise. 1998

P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA. phansen@imgate.wustl.edu

The purpose of this study was to determine whether the increase in insulin sensitivity of skeletal muscle glucose transport induced by a single bout of exercise is mediated by enhanced translocation of the GLUT-4 glucose transporter to the cell surface. The rate of 3-O-[3H]methyl-D-glucose transport stimulated by a submaximally effective concentration of insulin (30 microU/ml) was approximately twofold greater in the muscles studied 3.5 h after exercise than in those of the sedentary controls (0.89 +/- 0.10 vs. 0.43 +/- 0.05 micromol . ml-1 . 10 min-1; means +/- SE for n = 6/group). GLUT-4 translocation was assessed by using the ATB-[2-3H]BMPA exofacial photolabeling technique. Prior exercise resulted in greater cell surface GLUT-4 labeling in response to submaximal insulin treatment (5.36 +/- 0.45 dpm x 10(3)/g in exercised vs. 3.00 +/- 0.38 dpm x 10(3)/g in sedentary group; n = 10/group) that closely mirrored the increase in glucose transport activity. The signal generated by the insulin receptor, as reflected in the extent of insulin receptor substrate-1 tyrosine phosphorylation, was unchanged after the exercise. We conclude that the increase in muscle insulin sensitivity of glucose transport after exercise is due to translocation of more GLUT-4 to the cell surface and that this effect is not due to potentiation of insulin-stimulated tyrosine phosphorylation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D011437 Propylamines Derivatives of propylamine (the structural formula NH2CH2CH2CH3).
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006027 Glycosides Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed) Glycoside
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
December 1998, Journal of applied physiology (Bethesda, Md. : 1985),
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
October 1999, The American journal of physiology,
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
April 1995, The American journal of physiology,
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
November 1990, The American journal of physiology,
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
January 1998, The American journal of physiology,
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
September 1996, The American journal of physiology,
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
December 1997, Journal of applied physiology (Bethesda, Md. : 1985),
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
April 1998, The American journal of physiology,
P A Hansen, and L A Nolte, and M M Chen, and J O Holloszy
September 2012, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!