Effect of time-varying load on degree of bronchoconstriction in the dog. 1998

N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
Meakins-Christie Laboratories, Royal Victoria Hospital, Canada.

It is well established that the degree of airway smooth muscle shortening produced by a given dose of bronchial agonist is greatly affected by lung volume. The airways are tethered by parenchymal attachments, the tension of which increases progressively with lung volume, thereby presenting a commensurately increasing hindrance to smooth muscle contraction. Earlier studies (P. F. Dillon, M. O. Aksoy, S. P. Driska, and R. A. Murphy. Science 211: 495-497, 1981) presented evidence that smooth muscle contraction initially involves rapidly cycling cross bridges, which then change to noncycling (latch) bridges. They also suggested that most of the muscle shortening occurs during the early rapid cross-bridge phase. This implies that smooth muscle subject to a given load early in contraction should shorten less than when it is subject to the same load later on. An in vitro study (W. Li and N. L. Stephens. Can. J. Physiol. Pharmacol. 72: 1458-1463, 1994) obtained support for this notion. To test this hypothesis in vivo, we measured the changes in lung impedance at 1 and 6 Hz produced in dogs by a bolus intravenous injection of methacholine when lung volume was increased for 10 s at different times after injection. We found that the changes in mechanics were greatly inhibited, whereas lung volume was elevated. However, when lung volume was returned to its initial level, the lung mechanics continued to change at a rate unaffected by the preceding volume change. We conclude that temporary mechanical inhibition of airway smooth muscle shortening in the normal dog in vivo merely delays an otherwise normal course of contraction.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016084 Bronchoconstriction Narrowing of the caliber of the BRONCHI, physiologically or as a result of pharmacological intervention. Bronchial Constriction,Bronchial Constrictions,Bronchoconstrictions,Constriction, Bronchial,Constrictions, Bronchial
D016210 Methacholine Chloride A quaternary ammonium parasympathomimetic agent with the muscarinic actions of ACETYLCHOLINE. It is hydrolyzed by ACETYLCHOLINESTERASE at a considerably slower rate than ACETYLCHOLINE and is more resistant to hydrolysis by nonspecific CHOLINESTERASES so that its actions are more prolonged. It is used as a parasympathomimetic bronchoconstrictor agent and as a diagnostic aid for bronchial asthma. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1116) Methacholine,2-(Acetyloxy)-N,N,N-trimethyl-1-propanaminium Chloride,Acetyl-2-methylcholine Chloride,Acetyl-beta-methacholine Chloride,Acetyl-beta-methylcholine,Mecholine,Mecholyl,Provocholine,Provokit,Acetyl 2 methylcholine Chloride,Acetyl beta methacholine Chloride,Acetyl beta methylcholine,Chloride, Methacholine

Related Publications

N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
January 1971, Surgical forum,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
June 1996, Masui. The Japanese journal of anesthesiology,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
March 2024, Physical chemistry chemical physics : PCCP,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
August 2000, Respiratory medicine,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
November 1975, The Journal of physiology,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
September 2002, Physical review. E, Statistical, nonlinear, and soft matter physics,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
December 2011, Respiratory medicine,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
January 1999, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova,
N Shinozuka, and J P Lavoie, and J G Martin, and J H Bates
November 2006, European journal of applied physiology,
Copied contents to your clipboard!