Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. 1998

C C Stichel, and H W Müller
Department of Neurology, University of Düsseldorf, Germany. stichel@uni-duesseldorf.de.

A damage or pathological process that destroys the continuity of axons in the mature central nervous system (CNS) has devastating consequences and produces lasting functional deficits. One of the major challenges in this field is to stimulate the regrowth of severed axons and reconstruction of pathways. Recent progress in molecular and cell biology has resulted in an explosion of knowledge on factors in the adult CNS being nonsupportive or even actively inhibitory to axonal regrowth. The new findings have a strong impact on the development of new therapeutic concepts directed to stimulate axonal regeneration. They give rise to cautious optimism, showing that under some circumstances repair of a CNS lesion is possible. In this review the authors summarize the current knowledge on the factors and mechanisms involved in regeneration failure and provide an overview of the current therapeutic approaches that may enable effective CNS regeneration in the future.

UI MeSH Term Description Entries
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy

Related Publications

C C Stichel, and H W Müller
August 2018, Biological reviews of the Cambridge Philosophical Society,
C C Stichel, and H W Müller
January 2014, Neuroscience research,
C C Stichel, and H W Müller
June 2016, Regenerative biomaterials,
C C Stichel, and H W Müller
April 2014, Nature communications,
C C Stichel, and H W Müller
January 2004, Current neurovascular research,
C C Stichel, and H W Müller
December 1997, Nature medicine,
C C Stichel, and H W Müller
November 2009, Respiratory physiology & neurobiology,
Copied contents to your clipboard!