Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. 1998

H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.

The crystal structure of the mouse major histocompatibility complex (MHC) class I molecule H-2Dd with an immunodominant peptide, designated P18-I10 (RGPGRAFVTI), from human immunodeficiency virus envelope glycoprotein 120 was determined at 3.2 A resolution. A novel orientation of the alpha3 domain of Dd relative to the alpha1/alpha2 domains results in significantly fewer contacts between alpha3 and beta2-microglobulin compared with other MHC class I proteins. Four out of ten peptide residues (P2 Gly, P3 Pro, P5 Arg and P10 Ile) are nearly completely buried in the Dd binding groove. This is consistent with previous findings that Dd exploits a four-residue binding motif comprising a glycine at P2, a proline at P3, a positively charged residue at P5, and a C-terminal hydrophobic residue at P9 or P10. The side-chain of P5 Arg is directed toward the floor of the predominantly hydrophobic binding groove where it forms two salt bridges and one hydrogen bond with Dd residue Asp77. The selection of glycine at P2 appears to be due to a narrowing of the B pocket, relative to that of other class I molecules, caused by Arg66 whose side-chain folds down into the binding cleft. Residue P3 Pro of P18-I10 occupies part of pocket D, which in Dd is partially split by a prominent hydrophobic ridge in the floor of the binding groove formed by Trp97 and Trp114. Residues P6 through P9 form a solvent-exposed bulge, with P7 Phe protruding the most from the binding groove and thereby probably constituting a major site of interaction with T cell receptors. A comparison of H-2Dd/P18-I10 with other MHC class I/peptide complexes of known structure provides insights into the possible basis for the specificity of the natural killer cell receptor Ly-49A for several related class I molecules.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001613 beta 2-Microglobulin An 11-kDa protein associated with the outer membrane of many cells including LYMPHOCYTES. It is the small subunit of MHC CLASS I MOLECULES. Association with beta 2-microglobulin is generally required for the transport of class I heavy chains from the endoplasmic reticulum to the cell surface. Beta 2-microglobulin is present in small amounts in serum, CEREBROSPINAL FLUID, and urine of healthy individuals, and to a much greater degree in the urine and plasma of patients with tubular PROTEINURIA, renal failure, or kidney transplants. Thymotaxin,beta 2 Microglobulin
D015699 HIV Envelope Protein gp120 External envelope protein of the human immunodeficiency virus which is encoded by the HIV env gene. It has a molecular weight of 120 kDa and contains numerous glycosylation sites. Gp120 binds to cells expressing CD4 cell-surface antigens, most notably T4-lymphocytes and monocytes/macrophages. Gp120 has been shown to interfere with the normal function of CD4 and is at least partly responsible for the cytopathic effect of HIV. Envelope Glycoprotein gp120, HIV,HTLV-III gp120,env Protein gp120, HIV,gp120(HIV),HIV Envelope Glycoprotein gp120,gp120 Envelope Glycoprotein, HIV,HTLV III gp120,gp120, HTLV-III

Related Publications

H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
July 1999, AIDS research and human retroviruses,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
January 1991, Journal of clinical microbiology,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
August 1992, The Journal of general virology,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
May 1991, Journal of virological methods,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
August 1988, The Journal of biological chemistry,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
January 1990, Proceedings of the National Academy of Sciences of the United States of America,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
February 1995, Journal of virology,
H Li, and K Natarajan, and E L Malchiodi, and D H Margulies, and R A Mariuzza
September 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!