Subcellular compartmentation of glutathione and glutathione precursors. A high resolution immunogold analysis of the outer retina of guinea pig. 1998

D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway.

Selective antibodies were used to assess the cellular and subcellular localization of glutathione, and the glutathione precursors gamma-glutamylcysteine, glutamate, and cysteine, in neuronal (photoreceptors) and non-neuronal (pigment epithelial cells and Müller cells) cell types in the outer retina of the guinea pig. In each cell type the highest level of glutathione immunoreactivity occurred in the mitochondria. The labeling density in the cytoplasmic matrix was higher (and the mitochondrial-cytoplasmic gold particle ratio lower) in pigment epithelial cells than in Müller cells and photoreceptors. The latter two cell types showed a mitochondrial-cytoplasmic gold particle ratio of 15.5 and 21.7, respectively. In contrast to glutathione, gamma-glutamylcysteine seemed to be enriched in the cytoplasmic matrix relative to the mitochondria. The immunogold labeling for this dipeptide was stronger in the pigment epithelial cells than in Müller cells and photoreceptors. Glutamate immunoreactivity was high in photoreceptors, intermediate in pigment epithelial cells, and low in Müller cells, while the cysteine immunogold signal was low in each cell type and cell compartment. The present results suggest that glutathione is concentrated in mitochondria but to different degrees in different cells. The low mitochondrial content of gamma-glutamylcysteine (the direct precursor of glutathione) is consistent with biochemical data indicating that glutathione is synthesized extramitochondrially and transported into the mitochondrial matrix. Judged from the immunocytochemical data, cysteine may be a rate-limiting factor in glutathione synthesis in each cell type while glutamate can be rate limiting only in Müller cells.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum

Related Publications

D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
February 1998, Neuroscience,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
May 1977, Cardiovascular research,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
October 2010, Protoplasma,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
March 1997, Circulation research,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
January 1968, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
January 2010, Eye (London, England),
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
January 2009, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
December 2011, Journal of integrative plant biology,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
January 2009, American journal of ophthalmology,
D Huster, and O P Hjelle, and F M Haug, and E A Nagelhus, and W Reichelt, and O P Ottersen
May 1996, Hearing research,
Copied contents to your clipboard!