Lack of tyrosine nitration by peroxynitrite generated at physiological pH. 1998

S Pfeiffer, and B Mayer
Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria. pfeiffer@kfunigraz.ac.at

Nitration of tyrosine residues of proteins has been suggested as a marker of peroxynitrite-mediated tissue injury in inflammatory conditions. The nitration reaction has been extensively studied in vitro by bolus addition of authentic peroxynitrite, an experimental approach hardly reflecting in vivo situations in which the occurrence of peroxynitrite is thought to result from continuous generation of .NO and O-2 at physiological pH. In the present study, we measured the nitration of free tyrosine by .NO and O-2 generated at well defined rates from the donor compound (Z)-1-[N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino]- dia zen-1-ium-1,2-diolate] (spermine NONOate) and the xanthine oxidase reaction, respectively. The results were compared with the established nitration reaction triggered by authentic peroxynitrite. Bolus addition of peroxynitrite (1 mM) to tyrosine (1 mM) at pH 7.4 yielded 36.77 +/- 1.67 microM 3-nitrotyrosine, corresponding to a recovery of about 4%. However, peroxynitrite formed from .NO and O-2, which were generated at equal rates ( approximately 5 microM x min-1) from 1 mM spermine NONOate, 28 milliunits/ml xanthine oxidase, and 1 mM hypoxanthine was much less efficient (0.67 +/- 0.01 microM; approximately 0.07% of total product flow). At O-2 fluxes exceeding the .NO release rates, 3-nitrotyrosine formation was below the detection limit of the high performance liquid chromatography method (<0.06 microM). Nitration was most efficient (approximately 0.3%) with the .NO donor alone, i.e. without concomitant generation of O-2. Nitration by .NO had a pH optimum of 8.2, increased progressively with increasing tyrosine concentrations (0.1-2 mM), and was not enhanced by NaHCO3 (up to 20 mM), indicating that it was mediated by .NO2 rather than peroxynitrite. Our results argue against peroxynitrite produced from .NO and O-2 as a mediator of tyrosine nitration in vivo.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008981 Molsidomine A morpholinyl sydnone imine ethyl ester, having a nitrogen in place of the keto oxygen. It acts as NITRIC OXIDE DONORS and is a vasodilator that has been used in ANGINA PECTORIS. Morsydomine,Corpea,Corvaton,Duracoron,Fali-Cor,Korvatone,MTW-Molsidomin,Molsi 1A Pharma,Molsi-AZU,Molsi-Puren,Molsibeta,Molsicor,Molsidain,Molsidomin,Molsidomin Heumann,Molsidomin Stada,Molsidomin Von Ct,Molsidomin-Ratiopharm,Molsihexal,Molsiket,SIN-10,Sydnopharm,Fali Cor,Heumann, Molsidomin,MTW Molsidomin,Molsi AZU,Molsi Puren,Molsidomin Ratiopharm,SIN 10,SIN10,Von Ct, Molsidomin
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009589 Nitrogen Oxides Inorganic oxides that contain nitrogen. Nitrogen Oxide,Oxide, Nitrogen,Oxides, Nitrogen
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013096 Spermine A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D014969 Xanthine Oxidase An iron-molybdenum flavoprotein containing FLAVIN-ADENINE DINUCLEOTIDE that oxidizes hypoxanthine, some other purines and pterins, and aldehydes. Deficiency of the enzyme, an autosomal recessive trait, causes xanthinuria. Hypoxanthine Oxidase,Hypoxanthine Dehydrogenase,Hypoxanthine-Xanthine Oxidase,Purine-Xanthine Oxidase,Dehydrogenase, Hypoxanthine,Hypoxanthine Xanthine Oxidase,Oxidase, Hypoxanthine,Oxidase, Hypoxanthine-Xanthine,Oxidase, Purine-Xanthine,Oxidase, Xanthine,Purine Xanthine Oxidase

Related Publications

S Pfeiffer, and B Mayer
October 2000, The Journal of biological chemistry,
S Pfeiffer, and B Mayer
July 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
S Pfeiffer, and B Mayer
December 2001, The Journal of biological chemistry,
S Pfeiffer, and B Mayer
November 1992, Archives of biochemistry and biophysics,
S Pfeiffer, and B Mayer
July 1998, Biochemical and biophysical research communications,
S Pfeiffer, and B Mayer
March 1997, Biochemical and biophysical research communications,
S Pfeiffer, and B Mayer
May 2009, Chemical research in toxicology,
Copied contents to your clipboard!