The ultrastructure of the cuticle and sheath of infective juveniles of entomopathogenic steinernematid nematodes. 1998

M N Patel, and D J Wright
Department of Biology, Imperial College of Science, Technology and Medicine, Silwood Park, Ascot, Berkshire, SL5 7PY, UK. m.n.patel@bio.ic.ac.uk

The ultrastructure of the cuticle of infective juveniles (IJs) of Steinernema carpocapsae (newly emerged and 80-day-old) and newly emerged IJs of S. riobravis, S. feltiae and S. glaseri was examined using transmission electron microscopy. The thickness of four distinctive layers of the cuticle was measured: epicuticle, cortical and median layer, striated layer and fibrous mat. The thickness of the cuticle was correlated with the size of the IJ. In the case of newly emerged IJs, the smallest species, S. carpocapsae, had a cuticle thickness of c. 270 nm compared with c. 460 nm for S. glaseri, the largest of the four species. The overall thickness of the cuticle or the thickness of the cuticle layers was not correlated with the ability of the IJs of the four species to survive desiccation per se. The major difference between newly emerged IJs of the four species was that S. carpocapsae had a proportionately thicker striated layer compared with the other three species. The significance of this is not known but it may be an adaptation involving the nictation behaviour of this species. A substantial change was observed in the cuticle of aged (80-day-old) IJs of S. carpocapsae, whereby the thickness of the cortical and median layer increased by more than 100% and the overall thickness of the cuticle increased by about 50%. Two possible explanations for this increase are: (i) new material was synthesized; or (ii) the fluid content of this layer increased due to an increase in the permeability of the outer layers of the cuticle. The ultrastructure of the sheaths of S. feltiae and S. glaseri was also examined and, apart from S. glaseri having a thicker sheath, the structure of the sheath in both species was similar, with the epicuticle and striated layer still visible.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014870 Water Loss, Insensible Loss of water by diffusion through the skin and by evaporation from the respiratory tract. Insensible Water Loss,Insensible Water Losses
D017168 Rhabditida An order of nematodes of the subclass SECERNENTEA. Its organisms are characterized by an annulated or smooth cuticle and the absence of caudal glands. Rhabditidas

Related Publications

M N Patel, and D J Wright
September 1994, International journal for parasitology,
M N Patel, and D J Wright
August 1972, Journal of ultrastructure research,
M N Patel, and D J Wright
January 1986, Zeitschrift fur Parasitenkunde (Berlin, Germany),
M N Patel, and D J Wright
April 1986, International journal for parasitology,
M N Patel, and D J Wright
June 2012, Current biology : CB,
Copied contents to your clipboard!